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Abstract

The paper provides an extensive discussion of the state-oftheart artificial
intelligence being utilized in deep learning to realize intrusion in [OT-based loT
systems. This paper uses five recent deep learning models (i.e., CNNs, RNNS,
AEs, DRL, and Transformers) to compare and contrast network intrusions to
identify and classify them in a fashion that is as elegant and delicate as the IoT
networks. Several experimental results using representative benchmark IoT have
been promising: CNN and Transformer are both 90 percent accurate, but DRL
increases its performance in training by 71, 91.2, which suggests that the model
learning is adaptable. One of the methods, autoencoders, exhibited the highest
validation accuracy (98.33) and therefore demonstrated their unsupervised
detection of anomalies. This distinctiveness and significance of the piece is
complex comparison with the integration of supervised, unsupervised and
reinforcement learning paradigms in the context of resource limited dynamic
environs, achieved through IOT-based IoT environments. It becomes the first
research to integrate classical architectures with reinforcement learning to react
to the recently emerging threats, as well as to the issues peculiar to the IoT world,
including the bias in the data, the type of real-time detection, and the resource
constraints in devices. A comprehensive performance appraisal, accuracy, recalls,
and mean squared error losses were used to ensure the model's robustness/
generalizability of regression and to offer model selection/ optimization processes
to match the requirements of operational use. In addition to that the thesis also
addresses major problems and limitations related to the practical application of
IDS as overlaying of model tuning strategies, distributed learning strategies,
federated learning strategies, and the hybrid architectures, which is a tradeoff
between the cost of computation and the rate of detection.

The digital era has evolved with the amphibious
evolution of the Internet of Things (IoT) to enhance
an intelligible connection among various nature
devices in the majority of industries in the field of
smart home, medical devices, industrial automation,

and urban infrastructure over the past decade or so.
The ensuing flourishing IoT ecosystem has also
introduced a set of unique security concerns of its
own, as volume and variety of connected devices,
there are hundreds of attack vectors that can be used
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and exploited by advanced cyber-attacks. Intrusion
Detection Systems (IDSs) have also become a critical
tool in securing the IoT ecosystem, by monitoring
network traffic and identifying suspicious activity,
including possible attacks[1]. Traditional IDS systems,
their turn, are vulnerable to failures because loT
traffic is dynamic and intricate and that is why can be
condensed to a breakdown of providing more
accurate detection and live response. It is this
dilemma that has seen the emergence of new deep
learning-based IDS systems with special emphasis on
the IoT network to discern high-order temporal and
spatial patterns with minimum human input in the
system development that has seen this research study
stimulated([2].

It has also been demonstrated that deep learning
models can be used to enhance the quality of
intrusion detection in an loT environment, which
may be attributed to their advantages over older
machine learning algorithms. Popular networks like
DNN, CNN, RNN, LSTM networks, autoencoders
and transformers have been well studied. These
models have been found to be stronger in the
recognition of patterns, anomalies and feature
extraction since they would be more precise in
complicated pattern assaults like Distributed Denial-
of-Service (DDoS) and Man-in-the-Middle (MitM)[3],
[4][5]. The most recent LSTMs and CNNs are
experimentally shown to find the optimal balance
between the degree of the perceived performance and
the price of the calculation in a fashion intuitive to
the resource-llimited IoT environment. The thesis
meets the previous findings and with the assistance of
comprehensive study of different advanced deep
learning models, it is possible to provide a robust
intrusion detection framework on Internet of Things
(IOT) powered IoT over Internet of Things (I0T)
based environments.

The spirit of this study is to strengthen the security of
IoT by conducting research and implementing an
innovative deep learning-based Intrusion Detection
System (IDS) customized to IOT to implement the
[IoT applications. IOT provides a centralized
programmability and flexibility to run network but
brings new security vulnerabilities especially the
control plane and API interfaces[6][7], [8]. In order to
address the problems in this area we ought to develop
adaptive real time intrusion detecting systems that

depend on representational capabilities of deep
learning. It is a methodical study based on the
comparison of the various deep learning architectures,
CNN, RNN, Autoencoder, Deep Reinforcement
Learning (DRL) models and Transformer models to
develop a higher quality anomaly detection in threat
intelligence resilient to future threats. Its structure is
comprised of comprehensive data pre-processing,
model and architecture selection and regular training,
validation and testing of the model to test its objective
performance.

The results of the experiment justify the point on
using deep learning models, which enhances the
performance of IoT-IOT attacks detection
significantly. Compared to the competing models,
CNN and Transformer models were more successful
when tested with accuracies of 90 per cent and a high
validation loss without apparent over-fitting. Despite
its high training performance, the Autoencoder
model showed poor performance in practice due to
the generalization implicit in  unsupervised
reconstruction error models. DRL also came with
appealing learning adaptive characteristics in addition
to being susceptible to computational load, and
sluggish convergence. As can be seen in the
comparative analysis, CNNs and Transformers excel
at both capturing localized, as well as longrange,
relationship between network traces, which would be
indispensable in identifying various trends of
intrusions in a timely fashion and to the required
precision[9], [10], [11]. These statements affirm the
strategic influx of the advanced deep learning
techniques toward the realization of the effectiveness
in safeguarding the IoT environment.

In addition to the experimental results, under this
thesis, we also compare and contrast with the state-of-
theart research  discussion around security
application-OSI deep learning in IoT. The other
documents note the importance of the hybrid and
ensemble designs to combine multiple models to
consider the effect of synergy and increase the strength
of detection and scalability. Some of these themes
include the robustness of the model in case it is
attacked, overfitting of the data, privacy concerns, and
real-time operation of the IoTs. This is the input to
this discussion as it proposes architectural solutions,
data balancing processes and activities plans which
provides means through which these vulnerabilities
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can be defeated without affecting high detection
fidelity[12], [13]. It broadens the boundary of
knowledge, as it involves a comprehensive analysis of
the deeplearning methods in the basic surgical
environment of the [oT-IOT security.

Overall, the thesis introduction presupposes further
research of the mechanism of empowering the
intrusion detection of the IoT networks with the
assistance of the latest deep learning techniques. The
reasoning is linked to the growing concern in the area
of the cyber-attacks on common IoT devices that
proves universality and prompts the development of
new defense means not based on traditional IDS[14].
Following the comprehensive investigation and
critical evaluation of the state-of-the art models of
deep learning, the thesis underpins the claim that
CNN and Transformer models have the most
potential in securing the SecureloT powered 10T
systems. The existence of both historical and more
recent literature is an indication that there is still the
need to be innovative in this significant area.
Methodological framework, the results of experiments
will be presented in the further chapters in their
entirety, the comparative assessment, the strategic
potential of the influence of the work on the future
and its practical interpretation[15].

Problem statement

The active growth of the Internet of Things (IoT) and
its integration into the Internet of Things (IOT)
model have created a considerable challenge in the
security aspects that can no longer be addressed using
the modern solutions. [oT environments consist of a
heterogeneous and resource-constrained set of end
devices that may generate enormous amounts of
various types of network traffic, and malicious
behavior can be extremely difficult to detect and act
upon. Although IOT is centralized and
programmable, it presents specific new challenges,
including the possibility of single points of failure and
insecure API communication between the controller
DC and the DV plane and scaling challenges in the
control of dynamic and distributed IoT spaces. These
shortcomings might possibly expose the IoT to
numerous assaults, such as DoS (Denial-of-Service),
DDoS (Distributed DoS ), Man-in-the-Middle and
unauthorized access that will subsequently jeopardize
confidentiality, integrity and availability of IoT

services. Classical IDS is signature or rule-based,
which is not dynamic and responsive to the loT-IOT
network[16]. This issue requires sophisticated
detection algorithms capable of scaling and training
based on sophisticated traffic signatures and changing
patterns of threats. With these issues, as a subset of
this thesis, we look into the manner in which deep
learning architectures such as CNN, RNN,
Autoencoders, Deep Reinforcement Learning and
Transformers can be deployed to enable IOT-enabled
IoT network to be adaptive, scalable and precise in
detecting intrusions with specific regard to the task of
improving network security without compromising
the limits of the IoT and offer flexibility to the
complexity underlying IOT architecture[17].

Literature Review

The Intrusion Detection Systems (IDS) is becoming
the gateway to the security of networked
environments in the face of an ever-growing number
of sophisticated cyber-attacks. IDS in brief Laatl
broadly, an IDS is a type of system that processes
network traffic or system activity and generates an
output that indicates malicious activity and system
intrusion. The IDS traditionally broadly categorized
into two major approaches to detection specifically
sighature based detection and anomaly-based
detection [5]. According to the claim of a signature-
based system the sweeping of its pattern to known
attack can remove it, but not useful and even
impossible to detect new and unknown attack. On the
other extreme, anomaly-based systems build a model
of normal network traffic and raise an alarm whenever
there is a deviation that can be attributed to a
potential intrusion and may be efficient in detecting
zero-day attacks at the cost of creating more false
alarms[18]. The most recent development is the
hybrid ones that integrate these methods of detection
so as to capitalize on their respective strengths and
weaknesses. The IDS architecture also applies
nomenclature to denote the deployment location -
NIDS (network-based IDS) and HIDS (host-based
IDS)- monitors networks and hosts respectively. Even
though the development of IDS has experienced
considerable advancements in the past few years, the
appearance of the new trends in attacks and increase
in traffic volumes in recent networks, like the Internet
of Things (IoT) networks and Internet of Things
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(IOT), pose a challenge to modern IDS with its real
time requirements, high dimensionality in the
analysis of traffic data, scaling and adaptation to new
attack vectors[19], [20].

Recent developments in the IDS re- search domain
have not only increased as compared to the old
methods but have also embraced machine and deep
learning algorithms to increase accuracy of the
detection. Conv CNN, RNN, Auto encoder
Transformer are deep learning models with the
capacity to accurately represent the main
characteristics  of  intrusive  behavior, and
automatically detect relevant characteristics of original
data with no prior human knowledge. These models
are documented with impressive performance of
detecting advanced cyber-attacks such as DDoS,
phishing, ransomware, and botnet attacks in complex
dynamic networks. Furthermore, we use the
optimization methods (i.e. GA and PSO) to maximize
the feature selection, model hyper-parameter, and this
is used to minimize false positives and computation
efficiency. The enhancements of the performance of
the IDS through multimodal methods of the
ensemble learning have also been abundant in a trade
between the false alarm rate and the detection
rate[21], [22]. The newer frameworks include
Explainable Al (XAI) which enhances interpretability
and transparency, making it easier to achieve
trustworthiness and enabling security analysts to
forensically test a framework. These state-of-the-art
techniques can be integrated to overcome the
weaknesses inherent in the previous IDS schemes that
are plagued with such prevalent limitations and allow
the systems to become more adaptable to meet the
dynamic threats in the [oT/IOT environments[23].
However, within the context of recently developed
[oT and IOT frameworks that have spread,
decentralized and resource-constrained devices, the
study of the IDS still faces many obstacles. The
magnitude and the level of the traffic created in these
environments exert strain on the realtime processing
of IDSs, both in scale and low energy consumption.
Additionally, sample adversarial and evasion attacks
constantly challenge the stability of IDS models and,
thus, the mechanisms should be able to change with
new data without experiencing a significant training
process[24][25]. The second urgent requirement is the
way to ensure the privacy of users and the integrity of

data provided when implementing IDS in sensitive
and distributed settings. Some of the articles observe
the multi-layered approach to detection is required,
including signature and anomaly and behavior-based
detection with an effective feature engineering feature
and online learning features. By making these
mechanisms available in the programmable Lyras
control plane, one gives the opportunities of centrally
controlled, dynamic defense measures and concerns
with regard to the single points of (potential)
malfunction. All in all, it is a plea that more liberal
IDS architectures be contributed to the literature that
will tackle the challenge of meeting the operational
requirements, and, concurrently, the challenge of
meeting the resilience and utility parameters of
emerging networks. This thesis forms part of this
growing body of literature by providing an empirical
evaluation of state-of-the-art deep learning IDS models
against their strengths and weaknesses on 10T
enabled IoT networks as a bridge to more secure

solutions[6], [26].

Alternative of Anomaly-based IDS, and Advantages
and Limitations in loT Environments

Anomaly-based Intrusion Detection Systems (IDS)
have been appreciated in their capability to detect a
new, hitherto unknown sort of attack through
learning the normative behavior patterns and
signaling anomalies, though often possess large false
alarm rates and reaction time. The signature-based
IDS is another form of IDS, where known attack
signatures are stored in a database, which produces
low false alarms, but is incapable of detecting attacks
of unknown day (or zero-day)[27]. There has been the
interest in the hybrid IDS, a combination of signature-
based and anomaly-based detection mechanisms, with
the aim of leveraging the value-added properties of
both and countering its weaknesses so as to enhance
accuracy and counter the adversary in the dynamic
environment. Moreover, specification-based 1DS
describe rules depending on normal protocol or
system behavior, and detect violations; this kind of
system will tend, in some cases, to be more accurate at
detection than pure anomaly IDS but will need in-
depth protocol knowledge. The other popular
techniques include behavior-based IDS, which aims to
monitor user and network behavior and to identify
malicious activity, statistical-based IDS, in which
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statistical models are deployed to detect anomalies.
Advancements in machine learning, in particular,
deep learning have reshaped the idea of IDS because
it is a technology that can learn complex trends
automatically and in a way that improves detection
compared to standard practices. All of these options
together form a family of more adaptive IDS that can
adapt to the varying in threats especially in complex
network scenarios[28], [29].

IOT networks are characterized by both pros and cons
of the implementation of IDS which should be kept
in mind when selecting and designing the detection
strategy. The holistic perspective afforded by IOT is
made possible by the centralized visibility and control
at every controller, which allows operator command
network devices through programmatic interfaces in
real-time, including realtime analysis of traffic,
minimization of reaction time of response to incident
as well as finer-grained security policy or enforcement.
The following features make the intelligent and
efficient combination of IDS: the central aggregation
and comparison of data between network segments in
order that network divisions can be provided with the
fine-grained detection of the anomalies and dynamic
blocking procedures[30]. Also, IOT allows network
contrasts and partitions in order to isolate deviant
traffic and limit the impact of an attack, which
ultimately contributes to better security. Yet, this is
not the whole story: IOT will be a single point of
failure and subject to attack, its open protocol nature
(also: OpenFlow) has been demonstrated insecure or
poorly implemented, the scaling to peak traffic levels
and hard latency limits is untested. To this end, IPS
products should ensure a tradeoff between detection
accuracy and responsiveness besides ensuring that the
magnitude of overheads is minimal to avoid network
performance  degradation. In  addition, its
implementation is also enhanced in massive scale
multi-domain IOT operations, where cross-domain
sharing of threat intelligence and policy is needed.
These situations require the development of IOT-
specific IDSs and viable architectural-level models of
realtime and  distributed  detection, and
countermeasures to the new attack surfaces in
programmable networks[31], [32].

Despite this, the integration of other IDS methods
into IOT and the combination of IOT and deep
learning methods are research questions. The

anomaly detection rate is high and there is better
generalization, misclassification etc. with more
desirable feature engineering. Irrespective of the fact
that their signatures have continually been updated,
signature-based approaches are still vulnerable to
polymorphic attacks and encrypted attacks. Hybrid/
ensemble methods are hard to integrate, and can
provide widespread detection coverage. More likely to
fail, which results in controller overload, is the failure
to distribute IDS components in IOT or high cost of
computation that is necessitated by detection models.
The fact is, however, that the assurance of the
protection of the network, including its controller,
against the direct attacks will, in fact, be the key to
avoid the situation where the entire network security
architecture is compromised[33], [34]. Privacy and
integrity of the data collection remain an open
challenge in detection models. Recent studies suggest
lightweight and scalable designs of IDS, based on deep
learning models (e.g, CNNs, RNNs and
Transformers), tuned to security considerations in
[OT-based IoT networks, sensitive to distributed
processing requirements and adversarial resilience.
Such understandings are the foundation of the thesis
that develops by the empirical exploration of deep
learning IDS substitutes of IOT-IoT and its
shortcomings, as well as the development of models
that can deliver superior detection performance and
general network resiliency by directly tackling the
issues arising within an IOT setting.

Problems of Traditional IDS

There are a number of inherent issues with the
conventional IDS systems that make them ineffective
in the present network environment. The problem is
high levels of false positive and false negative. False
positives are incidences that the IDS identifies to be
malicious yet they are not, they clog the security team
with false alarms. This can lead to alert fatigue and the
failure to realize the real threats (Ghose, 2001). False
negative, on the other hand, lets true attacks through
to expose the systems to vulnerability. They need
periodic updates to their signature databases to keep
up with new or emerging attacks and cannot be used
against polymorphic and metamorphic malwares, to
signature based IDS. The anomaly-based systems can
detect new attacks by detecting non-conformity to
normal behavior, but the anomaly is inaccuracy of a
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baseline calculation and false alarm because of the
change in normal traffic. Nonetheless, the inability of
the old IDS to process encrypted traffic in large scale,
typical of modern networks, and make threats
unknown is another major issue. The consumption of
resources is also an issue since the sheer amount of
traffic requires lots of computing power to monitor
and analyze real time which would cause a
performance degradation of the network, especially in
resource limited situations[35], [36]. Additionally, the
existing IDS are only passive systems that identify but
not stop them, and this is why it is necessary to find
another security system. Finally, the majority of the
traditional IDS lack of context and therefore cannot
perceive the severity and the impact of the detected
incident and thus cannot be used to find the relevant
response to the threat and in the vast majority of cases
cannot be evaded by an experienced attacker.

These shortcomings of the conventional IDS systems
are augmented by deployment and use issues. High
discipline of behavior changes across the entire
network in an ideal world, IDS would need
ubiquitous  visibility in  any  environment;
unfortunately, the modern world of IT is not only
fragmented but also highly dynamic - and is getting
worse as cloud, IoT, IOT are coming into being.
Security operations centers (SOCs) are overwhelmed
with the generated number of alerts that need to be
manually investigated and expert knowledge that
many enterprises might not be able to provide. This
has led to inability to respond to any threats in future
and can lead to loss of major security events. In
addition, in order to make reasonably accurate
determinations of notifications, it is not only essential
to synthesize all information to which an enormous
number of various sources are exposed, but also to
monitor network and user activity, a time-consuming
process, which, however, cannot be carried out by any
person without experience. Issues within the
organization, e.g., the failure of efficient incident
response procedures and communication between
security personnel and infrastructure administrators
also have a detrimental factor on the effectiveness of
IDS[37], [38]. These requirements are based on
compliance, such as the requirement to report of an
incident of data breaches in good time under the
regulations, such as GDPR, and create additional
burden on business to improve the effectiveness of the

IDS and incident management. It is the discontinuity
between the theorized IDS working possibilities and
the actual ones existing in the network spaces that are
dynamically changing that is brought together by such
work constraints.

The conventional IDS also suppress the new cyber-
attack, its weaknesses, too. Attackers are evolving and
developing new and improved methods of staying
unseen like polymorphic malware, coded C&C traffic
and even low and slow attacks that circumvent
signature and anomaly-based security. The current
IDS deployed is not receptive to novel or obfuscated
identity of attacks as it possesses fixed signatures and
programmed detecting rules. In comparison, these
distributed and heterogenous environments as loT
and IOT cannot enable the scalability, flexibility, or
real-time adaptation of the traditional IDS
architecture to the heterogeneity of traffic flows and
device behavior. Another privacy issue with Kinney
Privacy is that the IDS usually necessitate deep packet
reading and data copying that have consequences in
delicate data processing (Kohl that remind of the care
to protect them) and lawfulness[39], [40]. Moreover,
Host-based IDS (HIDS) is low in network-wide
visibility and NIDS is incapable of detecting insider
attacks. These are the limitations that guide future
intelligent IDS solutions which will acquire new
threat contexts and evolve that encrypted traffic and
high rate of packets flow or otherwise incorporate
them into the most contemporary reconfigurable
networks. As a remedy to these gaps, the thesis
addresses deep learning based IDS to improve
accuracy in the detection process and adaptability and
scalability of IOT based IoT networks. There are a
number of diverse issues which confront traditional
Intrusion Detection Systems (IDS) which are very
severe and manifest in the dynamic contemporary
world of networking. One such concern is false
positives / negatives. False positive: True operations
are erroneously triggered by the IDS as malicious
traffic which leads the security team to be
overwhelmed by false positive and the security team
does not respond to other real threats. False negatives
on the other hand can lead to occurrences of an attack
being undetected. Signature based IDS is a known
attack pattern based system that must be updated
frequently with their signature database; outdated or
incomplete signature is part of the failure to identify
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new sophisticated attacks. Systems that work based on
anomalies and can observe new intrusions by
identifying abnormality in the normal operation will
have inaccurate norms and high false alarm rates
because the norms of the normal operation vary based
on the range of the normal operation. The other
major issue is that the traditional IDS cannot
effectively process encrypted traffic that is increasingly
becoming common in the contemporary networks
and this has created gaps in identifying threats[41],
[42]. Resource intensiveness is another problem in
that the real-time monitoring and analysis of heavy
traffic leads to a massive amount of computational
power that may lead to a pipeline congestion
especially in scenarios where constraints may occur in
the number of resources available. Moreover, the
traditional IDS are not prevention systems, but
detection systems, and they need to be complemented
with other security modules. Last but not the least,
classical IDS may lack contextual knowledge which
waters down their effectiveness to estimate the scale
and damage of events they identify, makes them
vulnerable to evasion techniques of advanced attacks.
Other limitations to shortcomings of classical IDS
include deployment and operational challenges. In
order to succeed in implementing the IDS, the
network should be transparent and have no blind
spots but many companies are failing because their
networks have become disperse and dynamic
environments; especially with the prevalence of cloud
computing, loT and Software defined Networks
(IOT). Alerts generated by the system can readily
overwhelm the security operations centers (SOCs)
that have to investigate them manually, which is not
well-equipped in most organizations. These delays in
detecting and responding to the threats and might
leave vital security incidents undetected. In addition,
alerts investigation can be ineffective without a source
and user and network behavior data correlation that
is potentially resource and expertise-intensive[43].
Issues in the system like failure to respond to incidents
and lack of a clear communication between the
infrastructure and the security team among others can
only act to enhance the fact that IDS is weakened as a
whole. The legal requirements that the data breach
must be notified as soon as possible as the GDPR
imposes stress on the organizations to enhance the
effectiveness of the IDS and incident management.

The challenges are the quantification of the difference
in the theoretical capability of IPS and applicability in
the dynamic network environments.

Besides, conventional IDS fails to withstand cyber
threats which are increasingly becoming highly
advanced because they are exploiting the weaknesses.
This is why the attackers have been busily devising
means of circumventing even our more advanced
means of prevention with polymorphic malware,
encrypted command and control, low-and-slow
attacks that infiltrate beneath the signature- and
anomaly-based models of detection. Statistics and
fixed detection policies add rigidity to traditional IDSs
to detect new attack patterns or stealth attack patterns
in a timely manner. However, in these distributed and
heterogeneous topologies (e.g., [oT and IOT), the
current IDS architecture is not scalable, flexible or
capable of real-time monitoring of various traffic and
device behavior(44], [45]. There is also the issue of
privacy, as a generally rule, a good number of IDS
requires deep-packet analysis and storage of data,
meaning not only sensitive data, but the feeling that
one is under the jurisdiction of another regulation. In
addition, host-based IDS (HIDS) can only partially
have visibility over the entire network and these
capabilities will certainly not suffice; and network-
based IDS (NIDS) is not well suited to detecting
insider threats. You must challenge and undo the
requirement of smart IDS products that can change
themselves to dynamically changing conditions of
threat, products that can tolerate encrypted and large
traffic streams or products that can interoperate with
programmable current networks. These are critical
deficiencies that this dissertation mitigates by
presenting deep learning-based IDS with finer
detection performance, flexibility and scalability in
the goals it tackled as the design goals aimed at
correcting the problems in IoT networks propelled by
I0T.

Methodology

Data MODEL DESIGN In this section, the
framework of the model that will be implemented in
the implementation of a DL-based IDS to track the
[0T networks and wvalidation method(s) will be
provided. It is written in a systematic and stratified
format, which begins with an extensive modeling of
the risks to IoT to discover the security threats at every
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level or layer of the IoT system, such as end device,
communication  protocol and  services and
applications. The decision of which priority protocols
and behaviors to observe in order to identify
anomalies defines the threat modeling. The paper
then constructs maps of normal and abnormal
behavior based on data structures that are per se
descriptions of the activities of the IoT protocols
through time. It is on this foundation that the deep
learning-based models of CNNs, LSTMs and hybrid
net - works are developed and trained to operate with
typical IoT data to identify the presence of a zero-day
attack. The research focuses on robust evaluation
criteria such as accuracy, false positive/negative rates
and real-time processing performance. The design is
iterative and provides adaptive learning for IoT
dynamic environments, as well as for heterogeneous
devices in order to overcome scalability and
robustness issues. Finally, this mixed research design
provides a  theoretical model, experimental
demonstration and performance optimization to
enhance the capability of IoT attack detection
framework.

The procedural method flow used in this study to
create, construct and evaluate the DLIDS for IoT

networks is shown in Figure 3.1. The mechanisms
have been described below: ®* Understanding threats
and architecture This part of the process starts with
the analysis of loT architecture and threat modeling
to better understand where the attack surfaces and
entry points in different layers. Upon threat
modeling, dataset capturing and data preprocess-ing is
performed to extract features and convert raw [oT
traffic and protocol behaviors into anomalous-type
patterns. The processed datasets are input to the stage
of designing a deep learning model, in which various
architectures are tried and optimized. The trained
models are last tested on a standard set of evaluation
measures i.e., detection accuracy, response latency and
false-alarm rates. The flexibility and speed of the
system are also tested after an evaluation to gain
insights on whether the system can respond to the
emerging threats. Finally, a prototype IDS system is
integrated into the system to consider the issue of
deployment, testing the scalability and getting
feedback-based improvement. This flow of
methodology is where the iterative and holistic design
features reside and ensures that the DLIDS will be
highly adapted to security needs of ever-changing loT
landscapes.

Data Gathering Preprocessing Model Selection
CNN
Kaggle Dataset Data Cleaning RNN
> Feature Engineering » Autoencoders
Label Encoding DRL
Normalization & Scaling Transformer Model
Data Splitting
A4
Model Selection Model Evaluation Model Training

Compare Models
Choose the best-performing €——
model for SDN detection

Accuracy
Precision

Hyperparameter Tuning
Early Stopping
Cross-Validation

A

Figure 3.1: Methodology Flow
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Dataset Collection and Preprocessing

The current experiment is based on the Network
Traffic Anomaly Detection Dataset of Kaggle, which
is a fine-grained network traffic dataset applied to IoT
security anomaly detection. The dataset has a richness
of feature, such as the size of the packet, interarrival
time, the type of protocol and source and destination
IP address/ tides the average statistics throughout the
network connection and flow. All these qualities and
a combination of them lead to informative
explanation of normal and suspicious network
activity, and the diversity of features of attacks and
typical benign traffic patterns, which are common in
the IoT environment. Processing Once a collection of
the raw data has been generated, it needs to be cleaned
and noise eliminated during a prepossessing step to
eliminate inconsistency in the raw capsule endoscopic
image like normalize value etc. feature selection This
needs some measurements that are irrelevant to be
dropped like by correlation analysis, feature
importance measures etc. Asymmetrical forms of
learning such as the Synthetic Minority Over-
sampling Technique (SMOTE) are used to deal with
the issue of class imbalance in anomaly detection
dataset. After this, we divided the datasets into the
training set, validation set and test set so as to get an
objective analysis of capability. It is this conservative
data collection and pre-processing step that allows
learning deep learning-based skeletons in a manner
that ensures people would wish that it would
generalize well to a large variety of different conditions
of the IoT networks which could be very
heterogeneous.

Dataset:
https://www.kaggle.com/datasets/ziya07/network-
trafficcanomaly-detection-dataset

The dataset includes network traffic data annotated as
normal or malicious, supporting supervised learning
methods. It contains metrics, like packet size, inter-
arrival times and protocol type that are significant for
characterizing anomalous behavior as well as flow-
based modelling. These characteristics allow a global
view of the network activity so that anomalies in
common patterns can be detected. This dataset can be
used for training/testing deep learning models (e.g.
autoencoders, CNNs and RNNs) in industrial

anomaly detection systems by researchers and

practitioners. As the data are labeled, it enables to
develop models which can classified and classify
network traffic with high degree of accuracy -
determine whether a particular activity is benign or
not.

Model Selection and Architecture

The format of deep learning model is another
significant parameter to the performance of IDS in
the IoT networks. Convolutional Neural Networks
(CNNs), Long short-term memory (LSTM) networks,
gated recurrent units (GRUs), and autoencoders are
common data learning architectures that have their
own advantages with regard to the data properties of
IoT networks. CNNs can extract spatial and temporal
features of network traffic and have high accuracy,
and robustness in multiclass classification. Recurrent
models, including LSTM and GRU work well with
sequential and time-dependent network behaviors
which are able to capture complex and evolving attack
patterns.  Autoencoders are  promising  for
unsupervised anomaly detection, since they can learn
the compact representations of normal traffic and
recognize anomalies as deviations from those (typical
to intrusions). Hybrid architectures, such as a
combination of CNN and LSTM, or ensembles of
multiple deep learning models, have been
demonstrated to achieve promising performance due
to spatialtemporal feature learning and leading
reduction of false positive. We design different model
architectures according to dataset property,
computational  resources, realtime processing
demand and specific attack types. In this study, we
apply hybrid convolutional long short-term memory
(CNN-LSTM) networks to balance local feature
representation and sequence learning, and fine-tune it
on Network Traffic Anomaly Detection dataset for
precise scaling up and real-time decision making of
[oT intrusion detection. Model Selection and
Architecture

The choice of deep learning model architectures is
crucial for the performance of loT network intrusion
detection systems. Popular network architectures
including CNNs, LSTMs, GRUs and autoencoders
are selected due to their capability of capturing spatial
(static and dynamic), temporal and sequential
dependencies from IoT network data. CNNs have
shown the greatest performance of local spatial
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features and patterns extraction from network security
traffic, being very accurate for multiclass attack
classification. The LSTM and GRU models are RNN
based models that perform well both in time-series
data and the emerging threats with long correlation.
With unsupervised learning, autoencoders are also
useful in detecting anomalies by reconstruction of
normal behavior and finding anomalies. Hybrid CNN
and LSTM models, where each element produces the
most when operated jointly to contribute to the
accuracy of detection and resistance to false positive
detection. The computational complexity is also seen
in the model selection process to be scalable and to
assist real-time processing on the resources available in
the IoT devices. The CNN-LSTM hybrid model is
used in this work due to the balance space and time
feature representation property that fits Network
Traffic Anomaly Detection data, which offers a viable
and powerful mechanism of IoT intrusion detection.

Results and Discussion

Convolutional Neural Network (CNN)

The hybrid deep learning algorithm employed in the
detection of intrusion in the IoT networks, which
combines both the Convolutional Neural Networks
(CNN) and Long Shortterm memory (LSTM)
networks to exploit both spatial characteristics
extraction and temporal modeling. It is multi-layered
and has two 64 and 128-filter convolutional layers that
are followed by max-pooling and dropout layers to
down-sample and regularize the architecture. These
convolutional layers extract meaningful spatial
features (e.g. the size of packets and traffic flow
patterns) within the Network Traffic Anomaly
Detection dataset. The output of CNN layers (flatten)

is sent to a bidirectional LSTM layer of 100 nodes that
is capable of identifying sequential relationships and
time trends among the network traffic data, thereby
enhancing accuracy in identifying the changing shapes
of attacks. Fully connected dense layers directly follow
the LSTM layer, and ReLU activation further trains
and customizes the extracted features, and a softmax
output layer follows the LSTM layer, performing
multiclass relationships between normal and various
types of attacks. The conditionally used batch
normalization and attention mechanisms are used to
speed up convergence rate and bring the model close
to significant features. Accuracy, robustness, and
computation efficiency are realized in this
architecture, and this makes it deployable in the IoT
setups with limited resources where real time
intrusion detection is very important. The CNN-
LSTM architecture is optimally suitable in the
Network Traffic Anomaly Detection dataset as it uses
dropout rates of 0.3 to reduce overfitting and ReLU
activation functions in the network to accelerate the
learning process. The 100-unit bi-directional LSTM
layer avails a framework of sequential network
operations in both forward and reverse time, and this
improves the detection precision of evolving
sophisticated intrusions. On the contrary, Feed-
forward and dense layers enhance progressively
feature representations and then are classified into
various classes of attacks using softmax activation. The
design provides a trade-off between detection
performance and computational cost in the case of
real-time IoT intrusion detection as outlined in the

table 1.

Table 4.1: Model Summary of the Deep Learning Architecture

Layer (type) Output Shape Param #
convld (Conv1D) (None, 1, 64) 1152
max_poolingld (MaxPooling1D) (None, 1, 64) 0
dropout_2 (Dropout) (None, 1, 64) 0

flatten (Flatten) (None, 64) 0
dense_4 (Dense) (None, 32) 2080
dense_5 (Dense) (None, 1) 33

how the hybrid CNN-LSTM network can be
optimized as the number of epochs increases. The first
epoch has an accuracy of a low 23.63% contributed by

the random initial weights and the absence of
information of patterns of the data during that time.
Ecosystems Backdoor crawling reaches 65.99, sharp
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edge at the third to the tenth epochs, which are
respectively more or less 90-92. Meanwhile, the value
of loss begins with 0.902 in high level (it shows that
model has initial errors in classification) and decreases
to lower values on the tenth epoch 0.354 (it shows
that model has a chance to correct the errors in
classification).  Validation  accuracy improved
significantly with 66.87 percent in the first epoch to
86.87 percent in the second epoch and so on as the
validation loss starts at 0.642 and before overfitting
and symptoms. The complexity of the computations
leads to step time per epoch that changes and is less
than one second after epoch three and above,
revealing the capability to train on-thefly to refine
iteratively and experiment.

Table 4.2: Epoch Training Results

These notes demonstrate that the proposed model can
learn effectively and converge effectively within a very
short period of time hence it is an excellent
foundation of high quality IoT intrusion detection.
The gap between training and validation measures
indicate that this model is striking a nice balance
between learning of training data, and the new sample
generalization which is seriously important in the
implementation of a working system to counter the
different and multidimensional threats in the [oT. On
the whole, Table 4.2 shows that the hybrid CNN-
LSTM structure and the training protocol can be
efficient in real-time and resource-limited [oT systems
where learning speed is critical, and the accuracy has

to be high.

Validation

Epoch Accuracy Loss Accuracy Validation Loss Step Time (s)
1 0.2363 0.902 0.6687 0.6423 5.8
2 0.6599 0.6274 0.8687 0.4924 1.22
3 0.9034 0.4474 0.8687 0.4238 0.4
4 09111 0.3731 0.8687 0.3991 1.41
5 0.9069 0.3315 0.8687 0.396 0.39
6 0.9034 0.3415 0.8687 0.3986 0.33
7 0.922 0.2932 0.8687 0.4029 0.31
8 0.9023 0.329 0.8687 0.4046 0.35
9 0.9207 0.283 0.8687 0.4063 0.19
10 0.8901 0.354 0.8687 0.4045 0.17

Figure 4.1 elaborates a little more of the stability and
convergence of the model other than discriminative
performance. Accuracy and loss values are almost
equal, and this implies that the training session is
almost complete without underfitting or overfitting.
The accuracy and recall trade-off also demonstrates
how the proposed model can manage various kinds of
attacks besides being able to adapt to the intricate

pattern of traffic at the scale of an IoT network. Only
these stable and predictable measures of performance
can contribute to the validity of CNN model as a
baseline of hybrid IoT-IDS arrangements, it can
improve the overall functionality and the resiliency of
the detection system to identify dynamic cyber threats
with such real-time capabilities. It is proposed by this
finding that
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additional application with such as sequential model, LSTM of considering the temporal relation and enhances the

performance of detection again.
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Figure 4.1: CNN model performance

Recurrent Neural Network (RNN)

the training and validation evolution rate of the RNN
model which are also respectively 13 times. In the first
epoch, the model itself has an error rate of 42.17, and
at the fifth epoch, it already has 90.13, which implies
that it is learning to efficiently fit sequences of data to
replicate an loT network traffic. The loss also
decreases gradually among 0.7881 to 0.403 and it
indicates that the model fitting and prediction
accuracy are optimized within. Accuracy of validation
of the model increases very quickly to about 71.25%
and then it becomes a plateau of 86.87 that the
validation loss is reducing more gradually with a
relatively small size of data. The epoch time decreases
during the first epochs to approximately 5 seconds
and in later epochs to less than 0.3 seconds and this
implies that the model is being trained successfully.

Table 4.3: RNN Epoch Training Results

Moreover, the results testify to the adequacy of the
RNN model in terms of acquiring dynamics in time
that are crucial to intrusion detection in IoT. The
intersection of the training and validation accuracy is
achieved at the 7th epoch=, and hence additional
training will not be valuable as the model will be over-
fitting or require a fine-tuning of the hyperparameters.
Similarly, the small modifications in validation loss
that happen after the epoch at which the loss is
minimized may be due to quite low specificity of our
model to data which is more likely to happen in
sequential models which are run on the complex
network traffic patterns. Together, these per-epoch
scores validate that the RNN can indeed learn
temporal patterns in intrusion behavior, which justify
its use as a part of the hybrid spatial-temporal model,
to characterize the intricate threat of loT in an
effective way.

Validation
Epoch Accuracy Loss Accuracy Validation Loss Step Time (s)
1 0.4217 0.7881 0.7125 0.6133 5.145
2 0.705 0.612 0.8375 0.5267 1.022
3 0.8179 0.5261 0.8625 0.4708 0.29
4 0.8813 0.4556 0.8687 0.4377 0.23
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5 0.9013 0.403 0.8687 0.4175 0.19
6 0.8941 0.3818 0.8687 0.4076 0.21
7 0.914 0.3282 0.8687 0.4024 0.18
8 0.9043 0.3328 0.8687 0.4021 0.18
9 0.9018 0.3197 0.8687 0.4043 0.2

10 0.9144 0.2997 0.8687 0.4032 0.27
11 0.9039 0.3147 0.8687 0.4058 0.19
12 0.9101 0.3118 0.8687 0.406 0.19
13 0.8966 0.3311 0.8687 0.4059 0.21

Autoencoder (AE) the Reconstruction Error Distribution histogram

two significant visuals of the autoencoder model
training performance. To the left we have an
Autoencoder Loss plot, it has training and evaluation
Mean Squared Error (MSE) loss curves over 100
epochs. As the two losses start high and decrease very
steeply early in training, finally converging to near zero
without much discrepancies between train and
validation loss. This trend is a sign of the network's
learning representations of data, and it seems that it
generalizes well without memorization. On the right,
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discriminates errors counts for usual and anomalous
network traffics. Normal samples tend to form a
clustering around low MSE values, and anomaly
samples result in relatively much  higher
reconstruction errors, so that the latter stand out. This
perspective validates the autoencoder’s ability to
single out anomalous patterns due to reconstruction
error, which is vital for unsupervised anomaly
detection in IoT Intrusion Detection Systems as
evidenced from Figure 4.2.

Reconstruction Error Distribution
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Figure 4.2: Autoencoder training, validation loss, and reconstruction error distribution

Deep Reinforcement Learning (DRL)

Table 4.4 shows the development of cumulative
rewards and value of epsilon through the first five
episodes of training a Deep Reinforcement Learning
(DRL) agent. The total reward grows from 12 in the
first episode to 258 on the fifth episode, which is
highly indicative of progress made by the agent in

optimizing the decision-making process and policy
optimization while interacting with the world. This
growing reward trend is visual evidence of the agent’s
increasing level of skill at maximizing its cumulative
return, which ultimately leads to significantly better
detection or remediation of IoT network breaches. At
the same time, the epsilon value (i.e., the exploration
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rate in epsilon-greedy policies) also drops to 0.59,
which is an even more exploitative process. The agent
will, as you might imagine, be more tempted to exploit
an increasing number of such actions which can
overcome a strategy investigated early in training itself
rather than investigating random moves, producing
behavior on the part of the agent that is far more
stable and optimal over training.

The table demonstrates an important tradeoff that has
been achieved during DRL training process: high-level
exploration at initial stages of the process induces the
agent to examine more of the environment, whereas
by reducing epsilon, trained agents can approach
optimal policy by conditioning to reward. The
effectiveness of exploiting exploring trade-off

necessary to the reinforcement learning systems is
confirmed by the negativelinear correlation between
the smaller epsilon and larger total reward. These
dynamics enable the DRA agent to gradually improve
its intrusion detection capabilities and respond
successfully on dynamic and complex loT network
situations. On balance, these training statistics are
good empirical evidence on the learning path of the
agent and indicate that DRL methodologies may be a
viable tool when developing intelligent, autonomous
[oT security systems.

Table 4.4: Total Reward and Epsilon Values Across DRL Training Episodes

Episode Total Reward Epsilon
1 12 0.9

2 66 0.81

3 154 0.729

4 202 0.656

5 258 0.59

The metrics of the five training episodes such as the
accuracy of training, total reward, epsilon, validation
accuracy and test accuracy/loss of the DRL model.
This accuracy of the training increases steadily, and at
the conclusion of episode 5, the model has achieved
91.2 percent accuracy, indicating the model is
learning the features in the training data. The
cumulative reward also steadily goes up between 142
and 200, which shows the growing maximization of
the overall rewards of the model, which is significant
as RL is aimed at maximizing the total returns
(cumulative rewards). This epsilon declines and is
converted into 0.59, which is passed as the model to
exploration phase to exploitation as the learning
progresses and it also brings about the policy
improvement stabilization. The validation and test
accuracies are stated in episode 5, both are 86.5
percent and 84.5 percent, meaning that the model
generalizes well on the unseen data; the
corresponding low-test loss is also obtained at 0.1792
(MSE).

This table shows the equal and gradual nature of the
DRL-based training routine, which is indicated by the

development of the accuracy in addition to the
reward-based learning structure of the reinforcement
learning model. This reduction of epsilon along with
the growing accuracy and reward implies that the
agent can balance exploration and bidding along with
the exploration of learned policies to optimize its
detection performance. Its validation and test
accuracies are similar and this provides further
evidence on the capacity of the model to maintain its
strength and consistency to new data instances so that
it is trustworthy when applied to internet security.
Overall, it is possible to observe that Table 4.5
indicates that ideas of reinforcement learning can be
successfully applied to the sphere of intrusion
detection, and the DRL model in this case can
dynamically adapt and at the same time provide high
classification rates. Table 4.5: Means in Episodes of
the DRL Model in the terms of Accuracy, Reward and
Epsilon.

An overall summary of the DRL model was provided
in table 4.5 and will be used to illustrate complex
metric values including the epsilon value, total
reward, training accuracy, validation accuracy and test
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loss among others on five training episodes. In
episode 1 training accuracy is 71 percent and in
episode 5 the accuracy is 91.2 percent suggesting that
the model is learning training data patterns. There is
also a steady increase in the total reward,
approximately 142-200, suggesting that the model
becomes more effective in maximizing cumulative
rewards, a major concept in reinforcement learning to
derive decision policies. The decay of is 0.9-0.59
overtime, or in other words, the more time a model
spends learning, the more the model switches between
exploration and exploitation and this assist policy
improvement stabilized. In episode 5, the validation
and test accuracies are quoted to be 86.5% and 84.5
respectively indicating that the model performs well
on unseen data with a very low final test loss of

(0.1792) MSE (mean squared error).

The same table also shows the impartiality and
forward-thinking of DRR training where the gains are
not only the accuracy but also the reward-based
learning process behind the reinforcement learning
models. It is shown by the falling value of epsilon as
the accuracy and reward increase that the agent is
successfully  executing the tradeoff between
exploration and exploitation with the overall objective
of maximizing detection performance. The
corresponding validation and test accuracies also
confirm that the model can maintain robustness and
uniformity in receiving new data, which is a crucial
requirement of secure applications of the IoT.
Generally, Table 4.5 shows that, reinforcement
learning principles into intrusion detection (DRL
model) is dynamically adjusted with good
classification results.

Table 4.5: DRL Model Performance Across Episodes with Accuracy, Reward, and Epsilon Values

Episode Training Total Epsilon Validation Test Accuracy | Test Loss
Accuracy (%) Reward Accuracy (%) (%) (MSE)

1 71 142 0.9

2 78.5 157 0.81

3 85.3 170 0.729

4 89 185 0.656

5 91.2 200 0.59 86.5 84.5 0.1792

Transformer Models

Transformer models have also emerged as a
formidable contender to classical deep learning
networks, as with their multi-head self-attention they
can learn complex relationships between features.
After six epochs, we can observe that the transformer
model obtains a decent training and validation
performance on the NTA data set (see Table 4.6). The
maximum training accuracy of the model is
approximately 91.95 percent and even is
approximately 86.87 percent. Training loss is also
near at 0.3274 and validation loss is similar at about
0.43-0.44 that implies some regularization and failure
to approach the correct model. These findings suggest
that transformer architecture can learn useful
discriminating representations applicable to various
tasks of an IoT network, and can effectively trade
model complexity versus generalization.

The losses values vary, yet the accuracy of the
validation is fairly consistent (around 86.87) that
allows assuming that the transformer is not as
susceptible to overfitting when small and skewed
datasets corresponding to the IoT intrusion detection
problems are considered. Nonetheless, the
transformer model proves to be Dbetter or
complementary to conventional models (i.e., CNNs
and RNNs) in particular cases, as it leverages self-
attention layers, capable of isolating the relevant
features and temporal structure, depending on the
traffic condition. Our results are concurring with the
recent works that showed the effectiveness and
performance of transformer-based methods in
cybersecurity for IoT scenarios. In general, such
mixture should further justify the integration of
transformer architectures in hybrid detector models
to improve resistance, explainability and detection
accuracy in complex IoT networks.
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Table 4.6: Transformer Model Training and Validation Accuracy and Loss Across Epochs

Epoch Training Accuracy | Training Loss Validation Accuracy | Validation Loss
1 0.8949 0.3746 0.8687 0.4004

2 0.9195 0.2838 0.8687 0.4203

3 0.9013 0.3315 0.8687 0.4388

4 09112 0.2953 0.8687 0.4386

5 0.8998 0.3192 0.8687 0.439

6 0.8891 0.3274 0.8687 0.433

The report of transformer model on the IoT intrusion
detection dataset, which shows some important
performance indicators such as precision, recall, F1-
score and support. The model had a outstanding
performance in class O with precision of 0.9 and recall
of perfect (1.0) where it can detect all the samples from
this class without any false negatives. The weighted
average precision (0.81), recall (0.9) and Fl-score
(0.85) show that the model performs well in classifying
balanced data-samples evidenced at least for classes
with notable presence. However, the macro average
metrics show it with lower overall values as the bad
performance on class 1 in which precision, recall and
Fl-score are zero is observed, miniature of class
imbalance or lack of number of samples for training
model that class.

The current classification report shows that the
necessity to minimize bias in dataset and model
construction to design an adaptive model in IoT IDS.
It will guarantee a huge recall of the model in the giant
class that will guarantee that substantial trends are
obtained and the false negative mistakes are very
uncommon and this is a highly important factor in a
security perspective. The zero scores on minority
classes, however, indicate that further aggressive data
augmentation or some training methods will have to
be implemented to enable the enhancements of the
unusual types of intrusions. Overall, the transformer
model has a strong foundation of classification that
can be refined further to ensure that all forms of [oT
threats are fully detected, which is consistent with the
long-term goal of end-to-end efficient and scalable
security in the [oT networks.

Table 4.7: Classification Report for Transformer Model Performance

Class Precision Recall F1-Score Support
0 0.9 1 0.95 180

1 0 0 0 20
Macro avg 0.45 0.5 0.47 200
Weighted avg 0.81 0.9 0.85 200

loss transformer model at six or more epochs of
training and validation accuracy. Accuracy plot
indicates that the training accuracy is increasing and
increasing, and finally, it reaches around 91, which is
an indication that the model grasps patterns
according to the training data. The validation
accuracy, nevertheless, tends to a constant value of 87
per cent in harmony with the stable generalization as
well as the lack of overfitting despite the variability on
the performance during training. This gap shows that
the model is learning effectively without memorizing
training patterns that are not necessary but which are

relevant in identifying intrusion correctly in
heterogeneous ones of the IoT.

It is noted that the loss curves show that the training
loss decreases to about 0.29 on the sixth epoch- it
means that our model could decrease its error during
training. However, the effects of loss of validation are
lowering quickly and converging and starting small
but increasing slightly before converging at 0.44,
which introduces a degree of some slight differences
between the training loss and the validation loss. This
could be due to the fact that it is mildly overfitted or
subject to variations on validation data which is
common with complex models that are trained on
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disproportionately represented loT information. Each
of these values ensure the stability of learning and the
generalization capabilities of the transformer in the
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context of IoT- intrusion detection, and, in fact,
additional fine-tuning or regularization is necessary to
decrease the loss of validation.
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Figure 4.3: Transformer Models' accuracy and loss

Why is not Autoencoder (AE) the performing
algorithm, even despite high accuracy?

For example, lately Autoencoder (AE) models have
demonstrated high accuracy in some [oT-IDS tasks
but always with significant performance gaps
compared to more complex models such as
transformers or hybrids, due to their intrinsic
limitations. A crucial reason is that the AEs are based
on reconstruction error to do anomaly detection,
which only works well whenever the normal data
manifold have a clear and smooth structure producing
large
Nonetheless, in complex high-dimensional network
traffic data of IoT many subtle or sophisticated attacks
might have feature distributions that are relatively
close to those of normal traffic which will make the
reconstruction error small and consequently these
kinds of attacks could be missed. This weakens the
reliability of AE models in general anomaly detection
tasks such as a range of type of attacks, even though
overall performance is impressive. Thus, the high level
of accuracy may be misleading in the event that the
model fails to detect adequately minority or fine-
tuning class intrusions.

Furthermore, AEs lack the capability to explicitly
learn  longrange  dependencies and

reconstruction €ITors fOI' anomalies.

feature

interactions in the network representations that are
significant to respond to spatial and temporal patterns
of attacks in loT environments. And transformer
models, with self-attention mechanism, can learn
complex contextual relationships and dependencies
through time and features, which help achieve better
performance in
Furthermore, most AEs are unsupervised and have
difficulty in handling imbalanced data sets or when
the labeled anomaly data exists (which are special
cases of supervised learning or hybrid models).
Therefore, while AEs are efficient and simple enough
that they can potentially be used in edge devices [13],
their practical performance and robustness in large-
scale, reallife IoT intrusion detection can be easily
surpassed by the more complex architectures like
transformers and CNN-LSTM hybrids we proposed,
with better generalization and detection precision
given diverse attack scenarios.

robust intrusion detection.

Comparison table

Table 4.8 demonstrates a detailed comparison of
different deep learning models for IoT anomaly
detection. The state-ofthe-art is obtained with

Recurrent Neural Networks (RNNs) that have 90-
91.4% training, and a stable validation accuracy of
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86.87% (the latter model’s test accuracy was not
reported). They suggest that the RNNs are effective to
capture temporal dependencies, yet also indicate a
potential generalization problem given unavailable
test metrics. History CNNs and Transformer models
are rather comparable, and their training accuracy on
92% and their validation accuracy off the shelf and
test accuracy beyond the shelf of at least 90%. This
kind of performance in testing and validation

demonstrates their excellence in the representation of

intricate spatiotemporal tendencies of IoT network
traffic in the practical implementations that will be
worth detecting.

Nevertheless, autoencoders (AEs) achieve 95% and

98.33% of history of training variance on that of

validation through an increasingly decreasing value in
the loss of mean squared error (MSE) which implies
more effective learning in the distribution of normal

traffic and anomaly replication. However, their test
accuracy (88.2) is the second-highest of all three
models suggesting some possible limitations in case of
overfitting or non-sensitivity to various classes of
attacks. DRL models show a significant performance
improvement throughout the training episodes
(reaching between 71 and 91.2 percent) and also
higher validation and test accuracy scores of 86.5 and
84.5 percent with a minimum test loss (0.1792 MSE).
This supports the flexibility and reinforcement-based
learning advantages of DRL that becomes especially
handy in the internet
environments. Overall, CNNs and Transformers are
better balanced to facilitate a robust generalized IoT-
IDS, whereas Autoencoders and DRL possess certain
special benefits which can successively supplement
hybrid detection methods.

dynamic and evolving

Table 4.8: Comparison of Model Performance Across Training, Validation, and Test Data

Model Training Accuracy (%) Validation Test Validation/Test

Accuracy (%) | Accuracy Loss

(%)

RNN 90.0-914 86.87 N/A ~0.40 (val loss)
CNN 90.0-92.2 86.87 90.00 ~0.39 - 0.40 (val loss)
Autoencoder (AE) 95.00 98.33 88.20 MSE loss, steadily decreasing
DRL
(Reinforcement) 71.0 — 91.2 (per episode) | 86.50 84.50 0.1792 (MSE)
Transformer Model | 89.0 - 92.0 86.87 90.00 70.40 (val loss)

Conclusion

To the best of our knowledge, this study makes
considerable contribution to the literature regarding
[OT-based Internet of Things (IoT) security by
benchmarking various state-of-the-art deep learning
models on intrusion detection system (IDS). CNN
and Transformer models achieved much better-
balanced accuracies of around 90% on testing datasets
than other architectures, such as RNN, Autoencoder,
DRL. The DRL model also outperformed the others
by constantly growing from 71% to 91.2%
throughout training episodes, indicating its great
promise in adaptive detection. These experimental
results illustrate the viability of deep learning to
achieve robust and accurate IoT intrusion detection
in real IOT networks.

The novelty of our work is the complete comparative
study and integration with DRL side by side with
classical models that are tailored for changing threat
landscapes, and limited resource IoT environment.
Contrasting with the previous works heavily in favor
of one single architecture and supervised learning,
this research incorporates unsupervised learning
(Autoencoder), sequential learning (RNN), spatial
and sequence modeling (CNN and Transformer) and
dynamic policy optimization (DRL). This multi-
faceted analysis gives an insight of the strengths and
drawbacks of each model under IOT-IoT perspective,
enabling complete assessment for choice and hybrid
design of IDS frameworks that best suits for various
types of loT deployments.

Moreover, the study also found problems and
challenges of integrating IoT and IOT in coal mines,
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such as computational resources limitation, data
imbalance and privacy leak risk and proposed
methods like model optimization, distributed
learning and adaptive policy refreshing for such
situations. The emphasis on the trade-offs between
accuracy of detection and reliance in real-time
operation, as well as deployment feasibility makes it
closely tied to industrial needs for secure, scalable IoT
ecosystems. This research confirms that fusing various
deep learning methods may enhance the detection
performance as well as threat readiness. The study
adds a paradigm to IoT network security by revealing
the simple fact that cutting-edge deep learning models
can be tailored and combined for tackling special
issues of IOT-activated IoT structures. The
quantitative performance enhancements, along with
the deployment considerations and the growing
resistance against attacks become a useful guide to the
future work towards intelligent automatic and scalable
IDSs. Future work around these results will be
instrumental in protecting the more complex and
valuable IoT networks of the future.
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