
Policy Research Journal  
ISSN (E): 3006-7030 ISSN (P) : 3006-7022  Volume 3, Issue 10, 2025 
 

https://policyrj.com    | Akhter et al., 2025 | Page 60 

 
EMPOWERING INTRUSION DETECTION IN IOT THROUGH 

ADVANCED DEEP LEARNING TECHNIQUES 
 

Sana Akhter1, Muhammad Fuzail*2, Naeem aslam3, Hira Saleem4 
 

1,3,4Department of Computer Science, NFC Institute of Engineering and Technology, Multan, Pakistan 
*2Department of Computer Science, Air University Islamabad, Pakistan 

 
1sk084984@gmail.com; *2muhammad.fuzail@aumc.edu.pk; 3naeem.aslam@nfciet.edu.pk; 

4hira.saleem@nfciet.edu.pk 
 

DOI:https://doi.org/10.5281/zenodo.17255892  
 

 

Abstract 
The paper provides an extensive discussion of the state-of-the-art artificial 
intelligence being utilized in deep learning to realize intrusion in IOT-based IoT 
systems. This paper uses five recent deep learning models (i.e., CNNs, RNNs, 
AEs, DRL, and Transformers) to compare and contrast network intrusions to 
identify and classify them in a fashion that is as elegant and delicate as the IoT 
networks. Several experimental results using representative benchmark IoT have 
been promising: CNN and Transformer are both 90 percent accurate, but DRL 
increases its performance in training by 71, 91.2, which suggests that the model 
learning is adaptable. One of the methods, autoencoders, exhibited the highest 
validation accuracy (98.33) and therefore demonstrated their unsupervised 
detection of anomalies. This distinctiveness and significance of the piece is 
complex comparison with the integration of supervised, unsupervised and 
reinforcement learning paradigms in the context of resource limited dynamic 
environs, achieved through IOT-based IoT environments. It becomes the first 
research to integrate classical architectures with reinforcement learning to react 
to the recently emerging threats, as well as to the issues peculiar to the IoT world, 
including the bias in the data, the type of real-time detection, and the resource 
constraints in devices. A comprehensive performance appraisal, accuracy, recalls, 
and mean squared error losses were used to ensure the model's robustness/ 
generalizability of regression and to offer model selection/ optimization processes 
to match the requirements of operational use. In addition to that the thesis also 
addresses major problems and limitations related to the practical application of 
IDS as overlaying of model tuning strategies, distributed learning strategies, 
federated learning strategies, and the hybrid architectures, which is a tradeoff 
between the cost of computation and the rate of detection. 
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INTRODUCTION
The digital era has evolved with the amphibious 
evolution of the Internet of Things (IoT) to enhance 
an intelligible connection among various nature 
devices in the majority of industries in the field of 
smart home, medical devices, industrial automation, 

and urban infrastructure over the past decade or so. 
The ensuing flourishing IoT ecosystem has also 
introduced a set of unique security concerns of its 
own, as volume and variety of connected devices, 
there are hundreds of attack vectors that can be used 
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and exploited by advanced cyber-attacks. Intrusion 
Detection Systems (IDSs) have also become a critical 
tool in securing the IoT ecosystem, by monitoring 
network traffic and identifying suspicious activity, 
including possible attacks[1]. Traditional IDS systems, 
their turn, are vulnerable to failures because IoT 
traffic is dynamic and intricate and that is why can be 
condensed to a breakdown of providing more 
accurate detection and live response. It is this 
dilemma that has seen the emergence of new deep 
learning-based IDS systems with special emphasis on 
the IoT network to discern high-order temporal and 
spatial patterns with minimum human input in the 
system development that has seen this research study 
stimulated[2]. 
It has also been demonstrated that deep learning 
models can be used to enhance the quality of 
intrusion detection in an IoT environment, which 
may be attributed to their advantages over older 
machine learning algorithms. Popular networks like 
DNN, CNN, RNN, LSTM networks, autoencoders 
and transformers have been well studied. These 
models have been found to be stronger in the 
recognition of patterns, anomalies and feature 
extraction since they would be more precise in 
complicated pattern assaults like Distributed Denial-
of-Service (DDoS) and Man-in-the-Middle (MitM)[3], 
[4][5]. The most recent LSTMs and CNNs are 
experimentally shown to find the optimal balance 
between the degree of the perceived performance and 
the price of the calculation in a fashion intuitive to 
the resource-limited IoT environment. The thesis 
meets the previous findings and with the assistance of 
comprehensive study of different advanced deep 
learning models, it is possible to provide a robust 
intrusion detection framework on Internet of Things 
(IOT) powered IoT over Internet of Things (IOT) 
based environments. 
The spirit of this study is to strengthen the security of 
IoT by conducting research and implementing an 
innovative deep learning-based Intrusion Detection 
System (IDS) customized to IOT to implement the 
IoT applications. IOT provides a centralized 
programmability and flexibility to run network but 
brings new security vulnerabilities especially the 
control plane and API interfaces[6][7], [8]. In order to 
address the problems in this area we ought to develop 
adaptive real time intrusion detecting systems that 

depend on representational capabilities of deep 
learning. It is a methodical study based on the 
comparison of the various deep learning architectures, 
CNN, RNN, Autoencoder, Deep Reinforcement 
Learning (DRL) models and Transformer models to 
develop a higher quality anomaly detection in threat 
intelligence resilient to future threats. Its structure is 
comprised of comprehensive data pre-processing, 
model and architecture selection and regular training, 
validation and testing of the model to test its objective 
performance. 
The results of the experiment justify the point on 
using deep learning models, which enhances the 
performance of IoT-IOT attacks detection 
significantly. Compared to the competing models, 
CNN and Transformer models were more successful 
when tested with accuracies of 90 per cent and a high 
validation loss without apparent over-fitting. Despite 
its high training performance, the Autoencoder 
model showed poor performance in practice due to 
the generalization implicit in unsupervised 
reconstruction error models. DRL also came with 
appealing learning adaptive characteristics in addition 
to being susceptible to computational load, and 
sluggish convergence. As can be seen in the 
comparative analysis, CNNs and Transformers excel 
at both capturing localized, as well as long-range, 
relationship between network traces, which would be 
indispensable in identifying various trends of 
intrusions in a timely fashion and to the required 
precision[9], [10], [11]. These statements affirm the 
strategic influx of the advanced deep learning 
techniques toward the realization of the effectiveness 
in safeguarding the IoT environment. 
In addition to the experimental results, under this 
thesis, we also compare and contrast with the state-of-
the-art research discussion around security 
application-OSI deep learning in IoT. The other 
documents note the importance of the hybrid and 
ensemble designs to combine multiple models to 
consider the effect of synergy and increase the strength 
of detection and scalability. Some of these themes 
include the robustness of the model in case it is 
attacked, overfitting of the data, privacy concerns, and 
real-time operation of the IoTs. This is the input to 
this discussion as it proposes architectural solutions, 
data balancing processes and activities plans which 
provides means through which these vulnerabilities 
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can be defeated without affecting high detection 
fidelity[12], [13]. It broadens the boundary of 
knowledge, as it involves a comprehensive analysis of 
the deep-learning methods in the basic surgical 
environment of the IoT-IOT security. 
Overall, the thesis introduction presupposes further 
research of the mechanism of empowering the 
intrusion detection of the IoT networks with the 
assistance of the latest deep learning techniques. The 
reasoning is linked to the growing concern in the area 
of the cyber-attacks on common IoT devices that 
proves universality and prompts the development of 
new defense means not based on traditional IDS[14]. 
Following the comprehensive investigation and 
critical evaluation of the state-of-the art models of 
deep learning, the thesis underpins the claim that 
CNN and Transformer models have the most 
potential in securing the SecureIoT powered IOT 
systems. The existence of both historical and more 
recent literature is an indication that there is still the 
need to be innovative in this significant area. 
Methodological framework, the results of experiments 
will be presented in the further chapters in their 
entirety, the comparative assessment, the strategic 
potential of the influence of the work on the future 
and its practical interpretation[15]. 
 
Problem statement 
The active growth of the Internet of Things (IoT) and 
its integration into the Internet of Things (IOT) 
model have created a considerable challenge in the 
security aspects that can no longer be addressed using 
the modern solutions. IoT environments consist of a 
heterogeneous and resource-constrained set of end 
devices that may generate enormous amounts of 
various types of network traffic, and malicious 
behavior can be extremely difficult to detect and act 
upon. Although IOT is centralized and 
programmable, it presents specific new challenges, 
including the possibility of single points of failure and 
insecure API communication between the controller 
DC and the DV plane and scaling challenges in the 
control of dynamic and distributed IoT spaces. These 
shortcomings might possibly expose the IoT to 
numerous assaults, such as DoS (Denial-of-Service), 
DDoS (Distributed DoS ), Man-in-the-Middle and 
unauthorized access that will subsequently jeopardize 
confidentiality, integrity and availability of IoT 

services. Classical IDS is signature or rule-based, 
which is not dynamic and responsive to the IoT-IOT 
network[16]. This issue requires sophisticated 
detection algorithms capable of scaling and training 
based on sophisticated traffic signatures and changing 
patterns of threats. With these issues, as a subset of 
this thesis, we look into the manner in which deep 
learning architectures such as CNN, RNN, 
Autoencoders, Deep Reinforcement Learning and 
Transformers can be deployed to enable IOT-enabled 
IoT network to be adaptive, scalable and precise in 
detecting intrusions with specific regard to the task of 
improving network security without compromising 
the limits of the IoT and offer flexibility to the 
complexity underlying IOT architecture[17]. 
 
Literature Review 
The Intrusion Detection Systems (IDS) is becoming 
the gateway to the security of networked 
environments in the face of an ever-growing number 
of sophisticated cyber-attacks. IDS in brief Laat1 
broadly, an IDS is a type of system that processes 
network traffic or system activity and generates an 
output that indicates malicious activity and system 
intrusion. The IDS traditionally broadly categorized 
into two major approaches to detection specifically 
signature based detection and anomaly-based 
detection [5]. According to the claim of a signature-
based system the sweeping of its pattern to known 
attack can remove it, but not useful and even 
impossible to detect new and unknown attack. On the 
other extreme, anomaly-based systems build a model 
of normal network traffic and raise an alarm whenever 
there is a deviation that can be attributed to a 
potential intrusion and may be efficient in detecting 
zero-day attacks at the cost of creating more false 
alarms[18]. The most recent development is the 
hybrid ones that integrate these methods of detection 
so as to capitalize on their respective strengths and 
weaknesses. The IDS architecture also applies 
nomenclature to denote the deployment location - 
NIDS (network-based IDS) and HIDS (host-based 
IDS)- monitors networks and hosts respectively. Even 
though the development of IDS has experienced 
considerable advancements in the past few years, the 
appearance of the new trends in attacks and increase 
in traffic volumes in recent networks, like the Internet 
of Things (IoT) networks and Internet of Things 
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(IOT), pose a challenge to modern IDS with its real 
time requirements, high dimensionality in the 
analysis of traffic data, scaling and adaptation to new 
attack vectors[19], [20]. 
Recent developments in the IDS re- search domain 
have not only increased as compared to the old 
methods but have also embraced machine and deep 
learning algorithms to increase accuracy of the 
detection. Conv CNN, RNN, Auto encoder 
Transformer are deep learning models with the 
capacity to accurately represent the main 
characteristics of intrusive behavior, and 
automatically detect relevant characteristics of original 
data with no prior human knowledge. These models 
are documented with impressive performance of 
detecting advanced cyber-attacks such as DDoS, 
phishing, ransomware, and botnet attacks in complex 
dynamic networks. Furthermore, we use the 
optimization methods (i.e. GA and PSO) to maximize 
the feature selection, model hyper-parameter, and this 
is used to minimize false positives and computation 
efficiency. The enhancements of the performance of 
the IDS through multimodal methods of the 
ensemble learning have also been abundant in a trade 
between the false alarm rate and the detection 
rate[21], [22]. The newer frameworks include 
Explainable AI (XAI) which enhances interpretability 
and transparency, making it easier to achieve 
trustworthiness and enabling security analysts to 
forensically test a framework. These state-of-the-art 
techniques can be integrated to overcome the 
weaknesses inherent in the previous IDS schemes that 
are plagued with such prevalent limitations and allow 
the systems to become more adaptable to meet the 
dynamic threats in the IoT/IOT environments[23]. 
However, within the context of recently developed 
IoT and IOT frameworks that have spread, 
decentralized and resource-constrained devices, the 
study of the IDS still faces many obstacles. The 
magnitude and the level of the traffic created in these 
environments exert strain on the real-time processing 
of IDSs, both in scale and low energy consumption. 
Additionally, sample adversarial and evasion attacks 
constantly challenge the stability of IDS models and, 
thus, the mechanisms should be able to change with 
new data without experiencing a significant training 
process[24][25]. The second urgent requirement is the 
way to ensure the privacy of users and the integrity of 

data provided when implementing IDS in sensitive 
and distributed settings. Some of the articles observe 
the multi-layered approach to detection is required, 
including signature and anomaly and behavior-based 
detection with an effective feature engineering feature 
and online learning features. By making these 
mechanisms available in the programmable Lyras 
control plane, one gives the opportunities of centrally 
controlled, dynamic defense measures and concerns 
with regard to the single points of (potential) 
malfunction. All in all, it is a plea that more liberal 
IDS architectures be contributed to the literature that 
will tackle the challenge of meeting the operational 
requirements, and, concurrently, the challenge of 
meeting the resilience and utility parameters of 
emerging networks. This thesis forms part of this 
growing body of literature by providing an empirical 
evaluation of state-of-the-art deep learning IDS models 
against their strengths and weaknesses on IOT 
enabled IoT networks as a bridge to more secure 
solutions[6], [26]. 
 
Alternative of Anomaly-based IDS, and Advantages 
and Limitations in IoT Environments 
Anomaly-based Intrusion Detection Systems (IDS) 
have been appreciated in their capability to detect a 
new, hitherto unknown sort of attack through 
learning the normative behavior patterns and 
signaling anomalies, though often possess large false 
alarm rates and reaction time. The signature-based 
IDS is another form of IDS, where known attack 
signatures are stored in a database, which produces 
low false alarms, but is incapable of detecting attacks 
of unknown day (or zero-day)[27]. There has been the 
interest in the hybrid IDS, a combination of signature-
based and anomaly-based detection mechanisms, with 
the aim of leveraging the value-added properties of 
both and countering its weaknesses so as to enhance 
accuracy and counter the adversary in the dynamic 
environment. Moreover, specification-based IDS 
describe rules depending on normal protocol or 
system behavior, and detect violations; this kind of 
system will tend, in some cases, to be more accurate at 
detection than pure anomaly IDS but will need in-
depth protocol knowledge. The other popular 
techniques include behavior-based IDS, which aims to 
monitor user and network behavior and to identify 
malicious activity, statistical-based IDS, in which 
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statistical models are deployed to detect anomalies. 
Advancements in machine learning, in particular, 
deep learning have reshaped the idea of IDS because 
it is a technology that can learn complex trends 
automatically and in a way that improves detection 
compared to standard practices. All of these options 
together form a family of more adaptive IDS that can 
adapt to the varying in threats especially in complex 
network scenarios[28], [29]. 
IOT networks are characterized by both pros and cons 
of the implementation of IDS which should be kept 
in mind when selecting and designing the detection 
strategy. The holistic perspective afforded by IOT is 
made possible by the centralized visibility and control 
at every controller, which allows operator command 
network devices through programmatic interfaces in 
real-time, including real-time analysis of traffic, 
minimization of reaction time of response to incident 
as well as finer-grained security policy or enforcement. 
The following features make the intelligent and 
efficient combination of IDS: the central aggregation 
and comparison of data between network segments in 
order that network divisions can be provided with the 
fine-grained detection of the anomalies and dynamic 
blocking procedures[30]. Also, IOT allows network 
contrasts and partitions in order to isolate deviant 
traffic and limit the impact of an attack, which 
ultimately contributes to better security. Yet, this is 
not the whole story: IOT will be a single point of 
failure and subject to attack, its open protocol nature 
(also: OpenFlow) has been demonstrated insecure or 
poorly implemented, the scaling to peak traffic levels 
and hard latency limits is untested. To this end, IPS 
products should ensure a tradeoff between detection 
accuracy and responsiveness besides ensuring that the 
magnitude of overheads is minimal to avoid network 
performance degradation. In addition, its 
implementation is also enhanced in massive scale 
multi-domain IOT operations, where cross-domain 
sharing of threat intelligence and policy is needed. 
These situations require the development of IOT-
specific IDSs and viable architectural-level models of 
real-time and distributed detection, and 
countermeasures to the new attack surfaces in 
programmable networks[31], [32]. 
Despite this, the integration of other IDS methods 
into IOT and the combination of IOT and deep 
learning methods are research questions. The 

anomaly detection rate is high and there is better 
generalization, misclassification etc. with more 
desirable feature engineering. Irrespective of the fact 
that their signatures have continually been updated, 
signature-based approaches are still vulnerable to 
polymorphic attacks and encrypted attacks. Hybrid/ 
ensemble methods are hard to integrate, and can 
provide widespread detection coverage. More likely to 
fail, which results in controller overload, is the failure 
to distribute IDS components in IOT or high cost of 
computation that is necessitated by detection models. 
The fact is, however, that the assurance of the 
protection of the network, including its controller, 
against the direct attacks will, in fact, be the key to 
avoid the situation where the entire network security 
architecture is compromised[33], [34]. Privacy and 
integrity of the data collection remain an open 
challenge in detection models. Recent studies suggest 
lightweight and scalable designs of IDS, based on deep 
learning models (e.g., CNNs, RNNs and 
Transformers), tuned to security considerations in 
IOT-based IoT networks, sensitive to distributed 
processing requirements and adversarial resilience. 
Such understandings are the foundation of the thesis 
that develops by the empirical exploration of deep 
learning IDS substitutes of IOT-IoT and its 
shortcomings, as well as the development of models 
that can deliver superior detection performance and 
general network resiliency by directly tackling the 
issues arising within an IOT setting. 
 
Problems of Traditional IDS 
There are a number of inherent issues with the 
conventional IDS systems that make them ineffective 
in the present network environment. The problem is 
high levels of false positive and false negative. False 
positives are incidences that the IDS identifies to be 
malicious yet they are not, they clog the security team 
with false alarms. This can lead to alert fatigue and the 
failure to realize the real threats (Ghose, 2001). False 
negative, on the other hand, lets true attacks through 
to expose the systems to vulnerability. They need 
periodic updates to their signature databases to keep 
up with new or emerging attacks and cannot be used 
against polymorphic and metamorphic malwares, to 
signature based IDS. The anomaly-based systems can 
detect new attacks by detecting non-conformity to 
normal behavior, but the anomaly is inaccuracy of a 
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baseline calculation and false alarm because of the 
change in normal traffic. Nonetheless, the inability of 
the old IDS to process encrypted traffic in large scale, 
typical of modern networks, and make threats 
unknown is another major issue. The consumption of 
resources is also an issue since the sheer amount of 
traffic requires lots of computing power to monitor 
and analyze real time which would cause a 
performance degradation of the network, especially in 
resource limited situations[35], [36]. Additionally, the 
existing IDS are only passive systems that identify but 
not stop them, and this is why it is necessary to find 
another security system. Finally, the majority of the 
traditional IDS lack of context and therefore cannot 
perceive the severity and the impact of the detected 
incident and thus cannot be used to find the relevant 
response to the threat and in the vast majority of cases 
cannot be evaded by an experienced attacker. 
These shortcomings of the conventional IDS systems 
are augmented by deployment and use issues. High 
discipline of behavior changes across the entire 
network in an ideal world, IDS would need 
ubiquitous visibility in any environment; 
unfortunately, the modern world of IT is not only 
fragmented but also highly dynamic - and is getting 
worse as cloud, IoT, IOT are coming into being. 
Security operations centers (SOCs) are overwhelmed 
with the generated number of alerts that need to be 
manually investigated and expert knowledge that 
many enterprises might not be able to provide. This 
has led to inability to respond to any threats in future 
and can lead to loss of major security events. In 
addition, in order to make reasonably accurate 
determinations of notifications, it is not only essential 
to synthesize all information to which an enormous 
number of various sources are exposed, but also to 
monitor network and user activity, a time-consuming 
process, which, however, cannot be carried out by any 
person without experience. Issues within the 
organization, e.g., the failure of efficient incident 
response procedures and communication between 
security personnel and infrastructure administrators 
also have a detrimental factor on the effectiveness of 
IDS[37], [38]. These requirements are based on 
compliance, such as the requirement to report of an 
incident of data breaches in good time under the 
regulations, such as GDPR, and create additional 
burden on business to improve the effectiveness of the 

IDS and incident management. It is the discontinuity 
between the theorized IDS working possibilities and 
the actual ones existing in the network spaces that are 
dynamically changing that is brought together by such 
work constraints. 
The conventional IDS also suppress the new cyber-
attack, its weaknesses, too. Attackers are evolving and 
developing new and improved methods of staying 
unseen like polymorphic malware, coded C&C traffic 
and even low and slow attacks that circumvent 
signature and anomaly-based security. The current 
IDS deployed is not receptive to novel or obfuscated 
identity of attacks as it possesses fixed signatures and 
programmed detecting rules. In comparison, these 
distributed and heterogenous environments as IoT 
and IOT cannot enable the scalability, flexibility, or 
real-time adaptation of the traditional IDS 
architecture to the heterogeneity of traffic flows and 
device behavior. Another privacy issue with Kinney 
Privacy is that the IDS usually necessitate deep packet 
reading and data copying that have consequences in 
delicate data processing (Kohl that remind of the care 
to protect them) and lawfulness[39], [40]. Moreover, 
Host-based IDS (HIDS) is low in network-wide 
visibility and NIDS is incapable of detecting insider 
attacks. These are the limitations that guide future 
intelligent IDS solutions which will acquire new 
threat contexts and evolve that encrypted traffic and 
high rate of packets flow or otherwise incorporate 
them into the most contemporary reconfigurable 
networks. As a remedy to these gaps, the thesis 
addresses deep learning based IDS to improve 
accuracy in the detection process and adaptability and 
scalability of IOT based IoT networks. There are a 
number of diverse issues which confront traditional 
Intrusion Detection Systems (IDS) which are very 
severe and manifest in the dynamic contemporary 
world of networking. One such concern is false 
positives / negatives. False positive: True operations 
are erroneously triggered by the IDS as malicious 
traffic which leads the security team to be 
overwhelmed by false positive and the security team 
does not respond to other real threats. False negatives 
on the other hand can lead to occurrences of an attack 
being undetected. Signature based IDS is a known 
attack pattern based system that must be updated 
frequently with their signature database; outdated or 
incomplete signature is part of the failure to identify 
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new sophisticated attacks. Systems that work based on 
anomalies and can observe new intrusions by 
identifying abnormality in the normal operation will 
have inaccurate norms and high false alarm rates 
because the norms of the normal operation vary based 
on the range of the normal operation. The other 
major issue is that the traditional IDS cannot 
effectively process encrypted traffic that is increasingly 
becoming common in the contemporary networks 
and this has created gaps in identifying threats[41], 
[42]. Resource intensiveness is another problem in 
that the real-time monitoring and analysis of heavy 
traffic leads to a massive amount of computational 
power that may lead to a pipeline congestion 
especially in scenarios where constraints may occur in 
the number of resources available. Moreover, the 
traditional IDS are not prevention systems, but 
detection systems, and they need to be complemented 
with other security modules. Last but not the least, 
classical IDS may lack contextual knowledge which 
waters down their effectiveness to estimate the scale 
and damage of events they identify, makes them 
vulnerable to evasion techniques of advanced attacks. 
Other limitations to shortcomings of classical IDS 
include deployment and operational challenges. In 
order to succeed in implementing the IDS, the 
network should be transparent and have no blind 
spots but many companies are failing because their 
networks have become disperse and dynamic 
environments; especially with the prevalence of cloud 
computing, IoT and Software defined Networks 
(IOT). Alerts generated by the system can readily 
overwhelm the security operations centers (SOCs) 
that have to investigate them manually, which is not 
well-equipped in most organizations. These delays in 
detecting and responding to the threats and might 
leave vital security incidents undetected. In addition, 
alerts investigation can be ineffective without a source 
and user and network behavior data correlation that 
is potentially resource and expertise-intensive[43]. 
Issues in the system like failure to respond to incidents 
and lack of a clear communication between the 
infrastructure and the security team among others can 
only act to enhance the fact that IDS is weakened as a 
whole. The legal requirements that the data breach 
must be notified as soon as possible as the GDPR 
imposes stress on the organizations to enhance the 
effectiveness of the IDS and incident management. 

The challenges are the quantification of the difference 
in the theoretical capability of IPS and applicability in 
the dynamic network environments. 
Besides, conventional IDS fails to withstand cyber 
threats which are increasingly becoming highly 
advanced because they are exploiting the weaknesses. 
This is why the attackers have been busily devising 
means of circumventing even our more advanced 
means of prevention with polymorphic malware, 
encrypted command and control, low-and-slow 
attacks that infiltrate beneath the signature- and 
anomaly-based models of detection. Statistics and 
fixed detection policies add rigidity to traditional IDSs 
to detect new attack patterns or stealth attack patterns 
in a timely manner. However, in these distributed and 
heterogeneous topologies (e.g., IoT and IOT), the 
current IDS architecture is not scalable, flexible or 
capable of real-time monitoring of various traffic and 
device behavior[44], [45]. There is also the issue of 
privacy, as a generally rule, a good number of IDS 
requires deep-packet analysis and storage of data, 
meaning not only sensitive data, but the feeling that 
one is under the jurisdiction of another regulation. In 
addition, host-based IDS (HIDS) can only partially 
have visibility over the entire network and these 
capabilities will certainly not suffice; and network-
based IDS (NIDS) is not well suited to detecting 
insider threats. You must challenge and undo the 
requirement of smart IDS products that can change 
themselves to dynamically changing conditions of 
threat, products that can tolerate encrypted and large 
traffic streams or products that can interoperate with 
programmable current networks. These are critical 
deficiencies that this dissertation mitigates by 
presenting deep learning-based IDS with finer 
detection performance, flexibility and scalability in 
the goals it tackled as the design goals aimed at 
correcting the problems in IoT networks propelled by 
IOT. 
 
Methodology 
Data MODEL DESIGN In this section, the 
framework of the model that will be implemented in 
the implementation of a DL-based IDS to track the 
IoT networks and validation method(s) will be 
provided. It is written in a systematic and stratified 
format, which begins with an extensive modeling of 
the risks to IoT to discover the security threats at every 
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level or layer of the IoT system, such as end device, 
communication protocol and services and 
applications. The decision of which priority protocols 
and behaviors to observe in order to identify 
anomalies defines the threat modeling. The paper 
then constructs maps of normal and abnormal 
behavior based on data structures that are per se 
descriptions of the activities of the IoT protocols 
through time. It is on this foundation that the deep 
learning-based models of CNNs, LSTMs and hybrid 
net - works are developed and trained to operate with 
typical IoT data to identify the presence of a zero-day 
attack. The research focuses on robust evaluation 
criteria such as accuracy, false positive/negative rates 
and real-time processing performance. The design is 
iterative and provides adaptive learning for IoT 
dynamic environments, as well as for heterogeneous 
devices in order to overcome scalability and 
robustness issues. Finally, this mixed research design 
provides a theoretical model, experimental 
demonstration and performance optimization to 
enhance the capability of IoT attack detection 
framework. 
The procedural method flow used in this study to 
create, construct and evaluate the DL-IDS for IoT 

networks is shown in Figure 3.1. The mechanisms 
have been described below: • Understanding threats 
and architecture This part of the process starts with 
the analysis of IoT architecture and threat modeling 
to better understand where the attack surfaces and 
entry points in different layers. Upon threat 
modeling, dataset capturing and data preprocess-ing is 
performed to extract features and convert raw IoT 
traffic and protocol behaviors into anomalous-type 
patterns. The processed datasets are input to the stage 
of designing a deep learning model, in which various 
architectures are tried and optimized. The trained 
models are last tested on a standard set of evaluation 
measures i.e., detection accuracy, response latency and 
false-alarm rates. The flexibility and speed of the 
system are also tested after an evaluation to gain 
insights on whether the system can respond to the 
emerging threats. Finally, a prototype IDS system is 
integrated into the system to consider the issue of 
deployment, testing the scalability and getting 
feedback-based improvement. This flow of 
methodology is where the iterative and holistic design 
features reside and ensures that the DL-IDS will be 
highly adapted to security needs of ever-changing IoT 
landscapes.

 
 

 
Figure 3.1: Methodology Flow 
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Dataset Collection and Preprocessing 
The current experiment is based on the Network 
Traffic Anomaly Detection Dataset of Kaggle, which 
is a fine-grained network traffic dataset applied to IoT 
security anomaly detection. The dataset has a richness 
of feature, such as the size of the packet, interarrival 
time, the type of protocol and source and destination 
IP address/ tides the average statistics throughout the 
network connection and flow. All these qualities and 
a combination of them lead to informative 
explanation of normal and suspicious network 
activity, and the diversity of features of attacks and 
typical benign traffic patterns, which are common in 
the IoT environment. Processing Once a collection of 
the raw data has been generated, it needs to be cleaned 
and noise eliminated during a prepossessing step to 
eliminate inconsistency in the raw capsule endoscopic 
image like normalize value etc. feature selection This 
needs some measurements that are irrelevant to be 
dropped like by correlation analysis, feature 
importance measures etc. Asymmetrical forms of 
learning such as the Synthetic Minority Over-
sampling Technique (SMOTE) are used to deal with 
the issue of class imbalance in anomaly detection 
dataset. After this, we divided the datasets into the 
training set, validation set and test set so as to get an 
objective analysis of capability. It is this conservative 
data collection and pre-processing step that allows 
learning deep learning-based skeletons in a manner 
that ensures people would wish that it would 
generalize well to a large variety of different conditions 
of the IoT networks which could be very 
heterogeneous. 
 
Dataset: 
https://www.kaggle.com/datasets/ziya07/network-
traffic-anomaly-detection-dataset 
The dataset includes network traffic data annotated as 
normal or malicious, supporting supervised learning 
methods. It contains metrics, like packet size, inter-
arrival times and protocol type that are significant for 
characterizing anomalous behavior as well as flow-
based modelling. These characteristics allow a global 
view of the network activity so that anomalies in 
common patterns can be detected. This dataset can be 
used for training/testing deep learning models (e.g. 
autoencoders, CNNs and RNNs) in industrial 
anomaly detection systems by researchers and 

practitioners. As the data are labeled, it enables to 
develop models which can classified and classify 
network traffic with high degree of accuracy – 
determine whether a particular activity is benign or 
not. 
 
Model Selection and Architecture 
The format of deep learning model is another 
significant parameter to the performance of IDS in 
the IoT networks. Convolutional Neural Networks 
(CNNs), Long short-term memory (LSTM) networks, 
gated recurrent units (GRUs), and autoencoders are 
common data learning architectures that have their 
own advantages with regard to the data properties of 
IoT networks. CNNs can extract spatial and temporal 
features of network traffic and have high accuracy, 
and robustness in multiclass classification. Recurrent 
models, including LSTM and GRU work well with 
sequential and time-dependent network behaviors 
which are able to capture complex and evolving attack 
patterns. Autoencoders are promising for 
unsupervised anomaly detection, since they can learn 
the compact representations of normal traffic and 
recognize anomalies as deviations from those (typical 
to intrusions). Hybrid architectures, such as a 
combination of CNN and LSTM, or ensembles of 
multiple deep learning models, have been 
demonstrated to achieve promising performance due 
to spatial-temporal feature learning and leading 
reduction of false positive. We design different model 
architectures according to dataset property, 
computational resources, real-time processing 
demand and specific attack types. In this study, we 
apply hybrid convolutional long short-term memory 
(CNN-LSTM) networks to balance local feature 
representation and sequence learning, and fine-tune it 
on Network Traffic Anomaly Detection dataset for 
precise scaling up and real-time decision making of 
IoT intrusion detection. Model Selection and 
Architecture 
The choice of deep learning model architectures is 
crucial for the performance of IoT network intrusion 
detection systems. Popular network architectures 
including CNNs, LSTMs, GRUs and autoencoders 
are selected due to their capability of capturing spatial 
(static and dynamic), temporal and sequential 
dependencies from IoT network data. CNNs have 
shown the greatest performance of local spatial 
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features and patterns extraction from network security 
traffic, being very accurate for multiclass attack 
classification. The LSTM and GRU models are RNN 
based models that perform well both in time-series 
data and the emerging threats with long correlation. 
With unsupervised learning, autoencoders are also 
useful in detecting anomalies by reconstruction of 
normal behavior and finding anomalies. Hybrid CNN 
and LSTM models, where each element produces the 
most when operated jointly to contribute to the 
accuracy of detection and resistance to false positive 
detection. The computational complexity is also seen 
in the model selection process to be scalable and to 
assist real-time processing on the resources available in 
the IoT devices. The CNN-LSTM hybrid model is 
used in this work due to the balance space and time 
feature representation property that fits Network 
Traffic Anomaly Detection data, which offers a viable 
and powerful mechanism of IoT intrusion detection. 
 
Results and Discussion 
Convolutional Neural Network (CNN) 
The hybrid deep learning algorithm employed in the 
detection of intrusion in the IoT networks, which 
combines both the Convolutional Neural Networks 
(CNN) and Long Short-term memory (LSTM) 
networks to exploit both spatial characteristics 
extraction and temporal modeling. It is multi-layered 
and has two 64 and 128-filter convolutional layers that 
are followed by max-pooling and dropout layers to 
down-sample and regularize the architecture. These 
convolutional layers extract meaningful spatial 
features (e.g. the size of packets and traffic flow 
patterns) within the Network Traffic Anomaly 
Detection dataset. The output of CNN layers (flatten) 

is sent to a bidirectional LSTM layer of 100 nodes that 
is capable of identifying sequential relationships and 
time trends among the network traffic data, thereby 
enhancing accuracy in identifying the changing shapes 
of attacks. Fully connected dense layers directly follow 
the LSTM layer, and ReLU activation further trains 
and customizes the extracted features, and a softmax 
output layer follows the LSTM layer, performing 
multiclass relationships between normal and various 
types of attacks. The conditionally used batch 
normalization and attention mechanisms are used to 
speed up convergence rate and bring the model close 
to significant features. Accuracy, robustness, and 
computation efficiency are realized in this 
architecture, and this makes it deployable in the IoT 
set-ups with limited resources where real time 
intrusion detection is very important. The CNN-
LSTM architecture is optimally suitable in the 
Network Traffic Anomaly Detection dataset as it uses 
dropout rates of 0.3 to reduce overfitting and ReLU 
activation functions in the network to accelerate the 
learning process. The 100-unit bi-directional LSTM 
layer avails a framework of sequential network 
operations in both forward and reverse time, and this 
improves the detection precision of evolving 
sophisticated intrusions. On the contrary, Feed-
forward and dense layers enhance progressively 
feature representations and then are classified into 
various classes of attacks using softmax activation. The 
design provides a trade-off between detection 
performance and computational cost in the case of 
real-time IoT intrusion detection as outlined in the 
table 1. 
 

 
Table 4.1: Model Summary of the Deep Learning Architecture 

Layer (type) Output Shape Param # 
conv1d (Conv1D) (None, 1, 64) 1152 
max_pooling1d (MaxPooling1D) (None, 1, 64) 0 
dropout_2 (Dropout) (None, 1, 64) 0 
flatten (Flatten) (None, 64) 0 
dense_4 (Dense) (None, 32) 2080 
dense_5 (Dense) (None, 1) 33 

 
how the hybrid CNN-LSTM network can be 
optimized as the number of epochs increases. The first 
epoch has an accuracy of a low 23.63% contributed by 

the random initial weights and the absence of 
information of patterns of the data during that time. 
Ecosystems Backdoor crawling reaches 65.99, sharp 
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edge at the third to the tenth epochs, which are 
respectively more or less 90-92. Meanwhile, the value 
of loss begins with 0.902 in high level (it shows that 
model has initial errors in classification) and decreases 
to lower values on the tenth epoch 0.354 (it shows 
that model has a chance to correct the errors in 
classification). Validation accuracy improved 
significantly with 66.87 percent in the first epoch to 
86.87 percent in the second epoch and so on as the 
validation loss starts at 0.642 and before overfitting 
and symptoms. The complexity of the computations 
leads to step time per epoch that changes and is less 
than one second after epoch three and above, 
revealing the capability to train on-the-fly to refine 
iteratively and experiment. 

These notes demonstrate that the proposed model can 
learn effectively and converge effectively within a very 
short period of time hence it is an excellent 
foundation of high quality IoT intrusion detection. 
The gap between training and validation measures 
indicate that this model is striking a nice balance 
between learning of training data, and the new sample 
generalization which is seriously important in the 
implementation of a working system to counter the 
different and multidimensional threats in the IoT. On 
the whole, Table 4.2 shows that the hybrid CNN-
LSTM structure and the training protocol can be 
efficient in real-time and resource-limited IoT systems 
where learning speed is critical, and the accuracy has 
to be high.

 
Table 4.2: Epoch Training Results 

Epoch Accuracy Loss 
Validation 
Accuracy Validation Loss Step Time (s) 

1 0.2363 0.902 0.6687 0.6423 5.8 

2 0.6599 0.6274 0.8687 0.4924 1.22 

3 0.9034 0.4474 0.8687 0.4238 0.4 

4 0.9111 0.3731 0.8687 0.3991 1.41 

5 0.9069 0.3315 0.8687 0.396 0.39 

6 0.9034 0.3415 0.8687 0.3986 0.33 

7 0.922 0.2932 0.8687 0.4029 0.31 

8 0.9023 0.329 0.8687 0.4046 0.35 
9 0.9207 0.283 0.8687 0.4063 0.19 
10 0.8901 0.354 0.8687 0.4045 0.17 

Figure 4.1 elaborates a little more of the stability and 
convergence of the model other than discriminative 
performance. Accuracy and loss values are almost 
equal, and this implies that the training session is 
almost complete without underfitting or overfitting. 
The accuracy and recall trade-off also demonstrates 
how the proposed model can manage various kinds of 
attacks besides being able to adapt to the intricate 

pattern of traffic at the scale of an IoT network. Only 
these stable and predictable measures of performance 
can contribute to the validity of CNN model as a 
baseline of hybrid IoT-IDS arrangements, it can 
improve the overall functionality and the resiliency of 
the detection system to identify dynamic cyber threats 
with such real-time capabilities. It is proposed by this 
finding that 
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additional application with such as sequential model, LSTM of considering the temporal relation and enhances the 
performance of detection again. 

 
Figure 4.1: CNN model performance 

 
Recurrent Neural Network (RNN) 
the training and validation evolution rate of the RNN 
model which are also respectively 13 times. In the first 
epoch, the model itself has an error rate of 42.17, and 
at the fifth epoch, it already has 90.13, which implies 
that it is learning to efficiently fit sequences of data to 
replicate an IoT network traffic. The loss also 
decreases gradually among 0.7881 to 0.403 and it 
indicates that the model fitting and prediction 
accuracy are optimized within. Accuracy of validation 
of the model increases very quickly to about 71.25% 
and then it becomes a plateau of 86.87 that the 
validation loss is reducing more gradually with a 
relatively small size of data. The epoch time decreases 
during the first epochs to approximately 5 seconds 
and in later epochs to less than 0.3 seconds and this 
implies that the model is being trained successfully. 

Moreover, the results testify to the adequacy of the 
RNN model in terms of acquiring dynamics in time 
that are crucial to intrusion detection in IoT. The 
intersection of the training and validation accuracy is 
achieved at the 7th epoch=, and hence additional 
training will not be valuable as the model will be over-
fitting or require a fine-tuning of the hyperparameters. 
Similarly, the small modifications in validation loss 
that happen after the epoch at which the loss is 
minimized may be due to quite low specificity of our 
model to data which is more likely to happen in 
sequential models which are run on the complex 
network traffic patterns. Together, these per-epoch 
scores validate that the RNN can indeed learn 
temporal patterns in intrusion behavior, which justify 
its use as a part of the hybrid spatial-temporal model, 
to characterize the intricate threat of IoT in an 
effective way. 

 
Table 4.3: RNN Epoch Training Results 

Epoch Accuracy Loss 
Validation 
Accuracy Validation Loss Step Time (s) 

1 0.4217 0.7881 0.7125 0.6133 5.145 
2 0.705 0.612 0.8375 0.5267 1.022 
3 0.8179 0.5261 0.8625 0.4708 0.29 
4 0.8813 0.4556 0.8687 0.4377 0.23 
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5 0.9013 0.403 0.8687 0.4175 0.19 
6 0.8941 0.3818 0.8687 0.4076 0.21 
7 0.914 0.3282 0.8687 0.4024 0.18 
8 0.9043 0.3328 0.8687 0.4021 0.18 
9 0.9018 0.3197 0.8687 0.4043 0.2 
10 0.9144 0.2997 0.8687 0.4032 0.27 
11 0.9039 0.3147 0.8687 0.4058 0.19 
12 0.9101 0.3118 0.8687 0.406 0.19 
13 0.8966 0.3311 0.8687 0.4059 0.21 

 
Autoencoder (AE) 
 two significant visuals of the autoencoder model 
training performance. To the left we have an 
Autoencoder Loss plot, it has training and evaluation 
Mean Squared Error (MSE) loss curves over 100 
epochs. As the two losses start high and decrease very 
steeply early in training, finally converging to near zero 
without much discrepancies between train and 
validation loss. This trend is a sign of the network's 
learning representations of data, and it seems that it 
generalizes well without memorization. On the right, 

the Reconstruction Error Distribution histogram 
discriminates errors counts for usual and anomalous 
network traffics. Normal samples tend to form a 
clustering around low MSE values, and anomaly 
samples result in relatively much higher 
reconstruction errors, so that the latter stand out. This 
perspective validates the autoencoder’s ability to 
single out anomalous patterns due to reconstruction 
error, which is vital for unsupervised anomaly 
detection in IoT Intrusion Detection Systems as 
evidenced from Figure 4.2. 

 

 
Figure 4.2: Autoencoder training, validation loss, and reconstruction error distribution 

Deep Reinforcement Learning (DRL) 
Table 4.4 shows the development of cumulative 
rewards and value of epsilon through the first five 
episodes of training a Deep Reinforcement Learning 
(DRL) agent. The total reward grows from 12 in the 
first episode to 258 on the fifth episode, which is 
highly indicative of progress made by the agent in 

optimizing the decision-making process and policy 
optimization while interacting with the world. This 
growing reward trend is visual evidence of the agent’s 
increasing level of skill at maximizing its cumulative 
return, which ultimately leads to significantly better 
detection or remediation of IoT network breaches. At 
the same time, the epsilon value (i.e., the exploration 
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rate in epsilon-greedy policies) also drops to 0.59, 
which is an even more exploitative process. The agent 
will, as you might imagine, be more tempted to exploit 
an increasing number of such actions which can 
overcome a strategy investigated early in training itself 
rather than investigating random moves, producing 
behavior on the part of the agent that is far more 
stable and optimal over training. 
The table demonstrates an important tradeoff that has 
been achieved during DRL training process: high-level 
exploration at initial stages of the process induces the 
agent to examine more of the environment, whereas 
by reducing epsilon, trained agents can approach 
optimal policy by conditioning to reward. The 
effectiveness of exploiting exploring trade-off 

necessary to the reinforcement learning systems is 
confirmed by the negative-linear correlation between 
the smaller epsilon and larger total reward. These 
dynamics enable the DRA agent to gradually improve 
its intrusion detection capabilities and respond 
successfully on dynamic and complex IoT network 
situations. On balance, these training statistics are 
good empirical evidence on the learning path of the 
agent and indicate that DRL methodologies may be a 
viable tool when developing intelligent, autonomous 
IoT security systems. 
 
 
 
 

 

Table 4.4: Total Reward and Epsilon Values Across DRL Training Episodes 
Episode Total Reward Epsilon 
1 12 0.9 
2 66 0.81 
3 154 0.729 
4 202 0.656 
5 258 0.59 

The metrics of the five training episodes such as the 
accuracy of training, total reward, epsilon, validation 
accuracy and test accuracy/loss of the DRL model. 
This accuracy of the training increases steadily, and at 
the conclusion of episode 5, the model has achieved 
91.2 percent accuracy, indicating the model is 
learning the features in the training data. The 
cumulative reward also steadily goes up between 142 
and 200, which shows the growing maximization of 
the overall rewards of the model, which is significant 
as RL is aimed at maximizing the total returns 
(cumulative rewards). This epsilon declines and is 
converted into 0.59, which is passed as the model to 
exploration phase to exploitation as the learning 
progresses and it also brings about the policy 
improvement stabilization. The validation and test 
accuracies are stated in episode 5, both are 86.5 
percent and 84.5 percent, meaning that the model 
generalizes well on the unseen data; the 
corresponding low-test loss is also obtained at 0.1792 
(MSE). 
This table shows the equal and gradual nature of the 
DRL-based training routine, which is indicated by the 

development of the accuracy in addition to the 
reward-based learning structure of the reinforcement 
learning model. This reduction of epsilon along with 
the growing accuracy and reward implies that the 
agent can balance exploration and bidding along with 
the exploration of learned policies to optimize its 
detection performance. Its validation and test 
accuracies are similar and this provides further 
evidence on the capacity of the model to maintain its 
strength and consistency to new data instances so that 
it is trustworthy when applied to internet security. 
Overall, it is possible to observe that Table 4.5 
indicates that ideas of reinforcement learning can be 
successfully applied to the sphere of intrusion 
detection, and the DRL model in this case can 
dynamically adapt and at the same time provide high 
classification rates. Table 4.5: Means in Episodes of 
the DRL Model in the terms of Accuracy, Reward and 
Epsilon. 
An overall summary of the DRL model was provided 
in table 4.5 and will be used to illustrate complex 
metric values including the epsilon value, total 
reward, training accuracy, validation accuracy and test 
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loss among others on five training episodes. In 
episode 1 training accuracy is 71 percent and in 
episode 5 the accuracy is 91.2 percent suggesting that 
the model is learning training data patterns. There is 
also a steady increase in the total reward, 
approximately 142-200, suggesting that the model 
becomes more effective in maximizing cumulative 
rewards, a major concept in reinforcement learning to 
derive decision policies. The decay of is 0.9-0.59 
overtime, or in other words, the more time a model 
spends learning, the more the model switches between 
exploration and exploitation and this assist policy 
improvement stabilized. In episode 5, the validation 
and test accuracies are quoted to be 86.5% and 84.5 
respectively indicating that the model performs well 
on unseen data with a very low final test loss of 
(0.1792) MSE (mean squared error). 

The same table also shows the impartiality and 
forward-thinking of DRR training where the gains are 
not only the accuracy but also the reward-based 
learning process behind the reinforcement learning 
models. It is shown by the falling value of epsilon as 
the accuracy and reward increase that the agent is 
successfully executing the tradeoff between 
exploration and exploitation with the overall objective 
of maximizing detection performance. The 
corresponding validation and test accuracies also 
confirm that the model can maintain robustness and 
uniformity in receiving new data, which is a crucial 
requirement of secure applications of the IoT. 
Generally, Table 4.5 shows that, reinforcement 
learning principles into intrusion detection (DRL 
model) is dynamically adjusted with good 
classification results.

 
Table 4.5: DRL Model Performance Across Episodes with Accuracy, Reward, and Epsilon Values 

Episode Training 
Accuracy (%) 

Total 
Reward 

Epsilon Validation 
Accuracy (%) 

Test Accuracy 
(%) 

Test Loss 
(MSE) 

1 71 142 0.9    
2 78.5 157 0.81    
3 85.3 170 0.729    
4 89 185 0.656    
5 91.2 200 0.59 86.5 84.5 0.1792 

 
Transformer Models 
Transformer models have also emerged as a 
formidable contender to classical deep learning 
networks, as with their multi-head self-attention they 
can learn complex relationships between features. 
After six epochs, we can observe that the transformer 
model obtains a decent training and validation 
performance on the NTA data set (see Table 4.6). The 
maximum training accuracy of the model is 
approximately 91.95 percent and even is 
approximately 86.87 percent. Training loss is also 
near at 0.3274 and validation loss is similar at about 
0.43-0.44 that implies some regularization and failure 
to approach the correct model. These findings suggest 
that transformer architecture can learn useful 
discriminating representations applicable to various 
tasks of an IoT network, and can effectively trade 
model complexity versus generalization. 

The losses values vary, yet the accuracy of the 
validation is fairly consistent (around 86.87) that 
allows assuming that the transformer is not as 
susceptible to overfitting when small and skewed 
datasets corresponding to the IoT intrusion detection 
problems are considered. Nonetheless, the 
transformer model proves to be better or 
complementary to conventional models (i.e., CNNs 
and RNNs) in particular cases, as it leverages self-
attention layers, capable of isolating the relevant 
features and temporal structure, depending on the 
traffic condition. Our results are concurring with the 
recent works that showed the effectiveness and 
performance of transformer-based methods in 
cybersecurity for IoT scenarios. In general, such 
mixture should further justify the integration of 
transformer architectures in hybrid detector models 
to improve resistance, explainability and detection 
accuracy in complex IoT networks.
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Table 4.6: Transformer Model Training and Validation Accuracy and Loss Across Epochs 
Epoch Training Accuracy Training Loss Validation Accuracy Validation Loss 
1 0.8949 0.3746 0.8687 0.4004 
2 0.9195 0.2838 0.8687 0.4203 
3 0.9013 0.3315 0.8687 0.4388 
4 0.9112 0.2953 0.8687 0.4386 
5 0.8998 0.3192 0.8687 0.439 
6 0.8891 0.3274 0.8687 0.433 

 
The report of transformer model on the IoT intrusion 
detection dataset, which shows some important 
performance indicators such as precision, recall, F1-
score and support. The model had a outstanding 
performance in class 0 with precision of 0.9 and recall 
of perfect (1.0) where it can detect all the samples from 
this class without any false negatives. The weighted 
average precision (0.81), recall (0.9) and F1-score 
(0.85) show that the model performs well in classifying 
balanced data-samples evidenced at least for classes 
with notable presence. However, the macro average 
metrics show it with lower overall values as the bad 
performance on class 1 in which precision, recall and 
F1-score are zero is observed, miniature of class 
imbalance or lack of number of samples for training 
model that class. 

The current classification report shows that the 
necessity to minimize bias in dataset and model 
construction to design an adaptive model in IoT IDS. 
It will guarantee a huge recall of the model in the giant 
class that will guarantee that substantial trends are 
obtained and the false negative mistakes are very 
uncommon and this is a highly important factor in a 
security perspective. The zero scores on minority 
classes, however, indicate that further aggressive data 
augmentation or some training methods will have to 
be implemented to enable the enhancements of the 
unusual types of intrusions. Overall, the transformer 
model has a strong foundation of classification that 
can be refined further to ensure that all forms of IoT 
threats are fully detected, which is consistent with the 
long-term goal of end-to-end efficient and scalable 
security in the IoT networks. 

 
Table 4.7: Classification Report for Transformer Model Performance 

Class Precision Recall F1-Score Support 
0 0.9 1 0.95 180 
1 0 0 0 20 
Macro avg 0.45 0.5 0.47 200 
Weighted avg 0.81 0.9 0.85 200 

 
loss transformer model at six or more epochs of 
training and validation accuracy. Accuracy plot 
indicates that the training accuracy is increasing and 
increasing, and finally, it reaches around 91, which is 
an indication that the model grasps patterns 
according to the training data. The validation 
accuracy, nevertheless, tends to a constant value of 87 
per cent in harmony with the stable generalization as 
well as the lack of overfitting despite the variability on 
the performance during training. This gap shows that 
the model is learning effectively without memorizing 
training patterns that are not necessary but which are 

relevant in identifying intrusion correctly in 
heterogeneous ones of the IoT. 
It is noted that the loss curves show that the training 
loss decreases to about 0.29 on the sixth epoch- it 
means that our model could decrease its error during 
training. However, the effects of loss of validation are 
lowering quickly and converging and starting small 
but increasing slightly before converging at 0.44, 
which introduces a degree of some slight differences 
between the training loss and the validation loss. This 
could be due to the fact that it is mildly overfitted or 
subject to variations on validation data which is 
common with complex models that are trained on 
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disproportionately represented IoT information. Each 
of these values ensure the stability of learning and the 
generalization capabilities of the transformer in the 

context of IoT- intrusion detection, and, in fact, 
additional fine-tuning or regularization is necessary to 
decrease the loss of validation. 

 

 
Figure 4.3: Transformer Models' accuracy and loss 

 
Why is not Autoencoder (AE) the performing 
algorithm, even despite high accuracy? 
For example, lately Autoencoder (AE) models have 
demonstrated high accuracy in some IoT-IDS tasks 
but always with significant performance gaps 
compared to more complex models such as 
transformers or hybrids, due to their intrinsic 
limitations. A crucial reason is that the AEs are based 
on reconstruction error to do anomaly detection, 
which only works well whenever the normal data 
manifold have a clear and smooth structure producing 
large reconstruction errors for anomalies. 
Nonetheless, in complex high-dimensional network 
traffic data of IoT many subtle or sophisticated attacks 
might have feature distributions that are relatively 
close to those of normal traffic which will make the 
reconstruction error small and consequently these 
kinds of attacks could be missed. This weakens the 
reliability of AE models in general anomaly detection 
tasks such as a range of type of attacks, even though 
overall performance is impressive. Thus, the high level 
of accuracy may be misleading in the event that the 
model fails to detect adequately minority or fine-
tuning class intrusions. 
Furthermore, AEs lack the capability to explicitly 
learn long-range dependencies and feature 

interactions in the network representations that are 
significant to respond to spatial and temporal patterns 
of attacks in IoT environments. And transformer 
models, with self-attention mechanism, can learn 
complex contextual relationships and dependencies 
through time and features, which help achieve better 
performance in robust intrusion detection. 
Furthermore, most AEs are unsupervised and have 
difficulty in handling imbalanced data sets or when 
the labeled anomaly data exists (which are special 
cases of supervised learning or hybrid models). 
Therefore, while AEs are efficient and simple enough 
that they can potentially be used in edge devices [13], 
their practical performance and robustness in large-
scale, real-life IoT intrusion detection can be easily 
surpassed by the more complex architectures like 
transformers and CNN-LSTM hybrids we proposed, 
with better generalization and detection precision 
given diverse attack scenarios. 
 
Comparison table  
Table 4.8 demonstrates a detailed comparison of 
different deep learning models for IoT anomaly 
detection. The state-of-the-art is obtained with 
Recurrent Neural Networks (RNNs) that have 90-
91.4% training, and a stable validation accuracy of 
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86.87% (the latter model’s test accuracy was not 
reported). They suggest that the RNNs are effective to 
capture temporal dependencies, yet also indicate a 
potential generalization problem given unavailable 
test metrics. History CNNs and Transformer models 
are rather comparable, and their training accuracy on 
92% and their validation accuracy off the shelf and 
test accuracy beyond the shelf of at least 90%. This 
kind of performance in testing and validation 
demonstrates their excellence in the representation of 
intricate spatiotemporal tendencies of IoT network 
traffic in the practical implementations that will be 
worth detecting. 
Nevertheless, autoencoders (AEs) achieve 95% and 
98.33% of history of training variance on that of 
validation through an increasingly decreasing value in 
the loss of mean squared error (MSE) which implies 
more effective learning in the distribution of normal 

traffic and anomaly replication. However, their test 
accuracy (88.2) is the second-highest of all three 
models suggesting some possible limitations in case of 
overfitting or non-sensitivity to various classes of 
attacks. DRL models show a significant performance 
improvement throughout the training episodes 
(reaching between 71 and 91.2 percent) and also 
higher validation and test accuracy scores of 86.5 and 
84.5 percent with a minimum test loss (0.1792 MSE). 
This supports the flexibility and reinforcement-based 
learning advantages of DRL that becomes especially 
handy in the dynamic and evolving internet 
environments. Overall, CNNs and Transformers are 
better balanced to facilitate a robust generalized IoT-
IDS, whereas Autoencoders and DRL possess certain 
special benefits which can successively supplement 
hybrid detection methods.

 
Table 4.8: Comparison of Model Performance Across Training, Validation, and Test Data 

Model Training Accuracy (%) Validation 
Accuracy (%) 

Test 
Accuracy 
(%) 

Validation/Test 
Loss 

 
RNN  90.0 – 91.4 86.87 N/A ~0.40 (val loss) 
CNN 90.0 – 92.2 86.87 90.00 ~0.39 – 0.40 (val loss) 
Autoencoder (AE) 95.00 98.33 88.20 MSE loss, steadily decreasing 
DRL 
(Reinforcement) 71.0 → 91.2 (per episode) 86.50 84.50 0.1792 (MSE) 
Transformer Model 89.0 – 92.0 86.87 90.00 ~0.40 (val loss) 

 
Conclusion 
To the best of our knowledge, this study makes 
considerable contribution to the literature regarding 
IOT-based Internet of Things (IoT) security by 
benchmarking various state-of-the-art deep learning 
models on intrusion detection system (IDS). CNN 
and Transformer models achieved much better-
balanced accuracies of around 90% on testing datasets 
than other architectures, such as RNN, Autoencoder, 
DRL. The DRL model also outperformed the others 
by constantly growing from 71% to 91.2% 
throughout training episodes, indicating its great 
promise in adaptive detection. These experimental 
results illustrate the viability of deep learning to 
achieve robust and accurate IoT intrusion detection 
in real IOT networks. 

The novelty of our work is the complete comparative 
study and integration with DRL side by side with 
classical models that are tailored for changing threat 
landscapes, and limited resource IoT environment. 
Contrasting with the previous works heavily in favor 
of one single architecture and supervised learning, 
this research incorporates unsupervised learning 
(Autoencoder), sequential learning (RNN), spatial 
and sequence modeling (CNN and Transformer) and 
dynamic policy optimization (DRL). This multi-
faceted analysis gives an insight of the strengths and 
drawbacks of each model under IOT-IoT perspective, 
enabling complete assessment for choice and hybrid 
design of IDS frameworks that best suits for various 
types of IoT deployments. 
Moreover, the study also found problems and 
challenges of integrating IoT and IOT in coal mines, 
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such as computational resources limitation, data 
imbalance and privacy leak risk and proposed 
methods like model optimization, distributed 
learning and adaptive policy refreshing for such 
situations. The emphasis on the trade-offs between 
accuracy of detection and reliance in real-time 
operation, as well as deployment feasibility makes it 
closely tied to industrial needs for secure, scalable IoT 
ecosystems. This research confirms that fusing various 
deep learning methods may enhance the detection 
performance as well as threat readiness. The study 
adds a paradigm to IoT network security by revealing 
the simple fact that cutting-edge deep learning models 
can be tailored and combined for tackling special 
issues of IOT-activated IoT structures. The 
quantitative performance enhancements, along with 
the deployment considerations and the growing 
resistance against attacks become a useful guide to the 
future work towards intelligent automatic and scalable 
IDSs. Future work around these results will be 
instrumental in protecting the more complex and 
valuable IoT networks of the future. 
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