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Introduction

Digitally altered images and videos showing people
have attracted
significant public attention and criticism in recent

with fake

facial expressions

Abstract
Humans can normally recognize faces, but today’s advanced technology and
artificial intelligence make it difficult to tell real faces from fake ones. Modern

image editing tools and Al techniques can create very realistic fake face images.
Because of this, people often struggle to identify whether a face image is real or
artificially created. To solve this problem, deep learning techniques are increasingly
being used because they provide more accurate and reliable results than human
judgment. Although deep learning techniques have been widely explored, Vision
Transformer architectures remain underexplored for fake face detection. This
paper adopts the MobileViT architecture and enhances it with task-specific
modifications to improve fake face detection performance. The proposed approach
used the MobileViT architecture, which combines the strengths of convolutional
neural networks and Vision Transformers. MobileViT effectively captures both
local facial features through convolutional layers and global contextual
information through transformerbased attention. This hybrid architecture makes
it well suited for fake face detection. Experimental results demonstrate that the
proposed MobileViT-based model outperforms baseline models. It achieved a
training accuracy of 85.37%, validation accuracy of 83.79% and test accuracy
of 83.68%. The study demonstrates that MobileViT architecture significantly
improves fake face detection while maintaining computational and memory
efficiency. This research has important applications in areas such as identity
verification, social media content moderation, cybersecurity, and digital content
authentication. Accurate detection of fake faces is critical in these domains, and
the proposed MobileViT-based approach provides an effective and reliable solution

for distinguishing real and manipulated facial images.

years due to their potential to mislead and
manipulate audiences [1]. These manipulated
media, commonly known as deepfakes, are
artificial intelligence (AI) generated images, audio,
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and videos that appear realistic but are not
genuine. Deep learning advancements have made
creating deepfakes easier and more convincing
than ever before. These advancements allow even
non-experts to produce content that can deceive
human observers. This rapid progress has
intensified concerns about the societal impact of
synthetic media. These concerns include threats to
privacy, trust, and personal security [2]. According
to recent surveys, deepfakes now present
real-world challenges for both individuals and
automated systems that attempts to verify
authenticity [3].

Deepfakes pose serious risks, which includes
misuse for  disinformation, fraud, and
non-consensual imagery. One of the -earliest
known cases of deepfakes occurred in December
2017, when a Reddit user called “Deepfakes” used
publicly available AI tools to create fake
pornographic videos by replacing real faces with
fabricated ones [4]. This incident demonstrated
the harmful potential of deepfake technology and
foreshadowed later waves of misuse. More
recently, lawmakers have moved to address
non-consensual  deepfake content through
legislation such as the Take It Down Act, passed
in 2025, which requires online platforms to
remove non-consensual intimate imagery within
strict timeframes [5].

Deepfaking refers to the use of artificial
intelligence to replace a person’s face in images or
videos with another person’s face in a highly
realistic way [6]. This type of synthetic media aims
to mislead viewers or change the original meaning
of the content. Most existing deepfake detection
methods depend on feature extraction techniques
and  machine learning models, which
automatically learn important patterns and
features from data using advanced neural
networks. However, significant challenges remain,
such as the rapid improvement of deepfake
generation methods, the lack of comprehensive
realworld datasets, and the absence of standard
benchmarks for evaluating detection systems [7].
Recent surveys emphasize that detection models
often struggle when confronted with real or
partially  manipulated  deepfakes  outside
controlled datasets [8].

Generative Adversarial Networks (GANs) have
been central to producing realistic fake media. A
GAN consists of a generator that synthesizes fake
images and a discriminator that attempts to
distinguish real from fake [9]. While GANs have
enabled the creation of highly convincing media,
humans often find it difficult to detect such
content  without specialized tools  [10].
Consequently, the development of reliable
deepfake detection systems remains a critical
research challenge. Existing deep learning-based
detectors achieve high accuracy in controlled
settings, but their performance often drops when
applied to unseen datasets or sophisticated
deepfake variants [11].
Recent research has focused on transformer-based
architectures due to their ability to capture long-
range dependencies and contextual information
in images [12]. One such architecture, Mobile
Vision Transformer (MobileViT), combines the
local  feature  extraction  capabilities  of
convolutional neural networks with the global
context modeling power of transformers. This
hybrid design allows MobileViT to maintain a
lightweight structure suitable for resource-
constrained environments while preserving high
accuracy in visual tasks [13]. Despite its potential,
MobileViT remains largely underexplored in the
domain of deepfake detection, with only a few
studies evaluating its effectiveness for detecting
manipulated media [14].
In this work, we propose a MobileViT-based
deepfake detection framework that leverages the
architecture’s ability to capture both fine-grained
texture details and global image context. Our
approach aims to improve accuracy against a wide
variety of deepfake generation techniques and
minimize the computational resources. The use of
MobileViT not only addresses computational
efficiency but also opens a promising direction for
deploying deepfake detection models on devices
with limited resources, such as mobile phones and
edge devices.
Objectives
The main objective of this research are as follows:
1. To design and implement a MobileViT
based model for real and fake face
classification to capture both local facial
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features and  global  contextual
information.

2. To evaluate the performance of the
proposed MobileViT architecture against
baseline deep learning models to assess its
effectiveness in detecting Al-generated
and manipulated facial images.

3. To analyze the efficiency and practicality
of the MobileViT-based approach for fake
face detection.

Literature Review

The concept of face manipulation predates
modern digital technologies, with one of the
earliest documented cases dating back to 1860,
when a portrait of Southern leader John C.
Calhoun was altered by replacing his head with
that of a U.S. President for propaganda purposes
[15]. Early image manipulation relied heavily on
manual techniques such as splicing, painting, and
copy move operations, often followed by post-
processing steps including scaling, rotation, and
color adjustments. While these methods required
significant skill and effort, they laid the
foundation for contemporary manipulation
practices. With advancements in computer
graphics and machine learning (ML) techniques,
image tampering has become increasingly
automated and semantically consistent. These
advancements have lowered the barrier for
creating  convincing  manipulations  and
significantly expanding their societal impact [16].
Face-swapping represents a specific and highly
impactful form of image and video tampering. The
first widely recognized deepfake appeared in 2017,
when a Reddit user known as “deepfake” released
manipulated celebrity videos created using
encoder-decoder architectures [17]. These early
methods relied on two autoencoders sharing a
latent space which requires extensive training data
and substantial computational resources. Despite
these limitations, face-swapping rapidly gained
popularity and became the foundational deepfake
technique. These techniques inspired applications
such as FakeApp, FaceSwap, and Deepnude by
2019 [18]. Multimedia manipulation strategies are
now commonly categorized into copy move,
splicing, deepfake generation, and resampling.

These strategies reflect the increasing diversity of
attack vectors in digital media [19].

Beyond traditional face swapping, face
reenactment techniques such as Face2Face [20]
introduced a new paradigm by transferring facial
expressions and head movements from a source
actor to a target while preserving the target’s
identity. Face2Face enables realtime facial
reconstruction and expression synchronization
which results in highly realistic output videos that
are difficult to distinguish from authentic content.
Unlike simple face replacement, reenactment
techniques manipulate subtle facial dynamics
which make detection more challenging. This
evolution underscores the need for detection
methods specifically designed to address facial
motion inconsistencies rather than relying solely
on global image artifacts [21].

The rapid advancement of deep generative
models, particularly Generative Adversarial
Networks (GANs) [22] and more recently
diffusion models, has dramatically increased the
realism of deepfakes. These technologies pose
serious threats to digital trust, privacy, and
security. International organizations such as
UNESCO have identified deepfakes as a major
contributor to the “crisis of knowing,”. Policy
responses, including legislative initiatives such as
the TAKE IT DOWN Act [5, 23], further reflect
the growing recognition of deepfakes as a societal
risk. Surveys published between 2024 and 2025
indicate that modern generative models can now
produce images and videos that are nearly
indistinguishable from authentic media, even
under forensic analysis [6].

Despite significant progress in deep learning based
detection, generalization remains one of the most
critical challenges. Many detection models achieve
high accuracy on constrained benchmark datasets
but experience severe performance degradation
when applied to unseen datasets or real world
content [7]. This issue is exacerbated by diffusion
based generative models, which reduce or
eliminate many of the visual artifacts traditionally
exploited by forensic algorithms. As a result,
recent  research  emphasizes  robustness,
explainability, and cross-dataset evaluation as
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essential components of reliable deepfake
detection systems [24].

To address the gap between laboratory
benchmarks and real world conditions, new
datasets have been introduced. The Deepfake-
Eval-2024 [25] benchmark represents a significant
advancement by providing a multimodal dataset
that reflects how deepfakes are actually circulated
online. Such datasets enable more realistic
evaluation of detection models and encourage the
development of systems that can operate
effectively under diverse and uncontrolled
conditions.

Early deepfake detection methods focused on
handcrafted features and traditional forensic cues
such as metadata analysis, Error Level Analysis
(ELA), and JPEG compression artifacts. Tools like
FotoForensics and MMC employ these
techniques, but they are easily bypassed by
sophisticated attackers and are ineffective against
GAN-generated images [26]. Consequently,
researchers shifted toward convolutional neural
networks (CNNs), which demonstrated superior
performance in capturing texture and frequency-
domain artifacts. Tariq et al. [27] pioneered the
use of neural networks to detect GAN-generated
fake faces by analyzing statistical image
components. Subsequent studies, including Wang
et al. [26], proposed LBP-Net and ensemble
models combining texture-based and deep
features.

Several comparative studies have evaluated the
effectiveness of popular CNN architectures for
fake face detection. Taeb et al. [28] reported that
VGG19 achieved the highest accuracy (95%) on
the “140K Real and Fake Faces” dataset when
combined with data augmentation. Other
researchers explored frequency-domain cues,
arguing that discriminative information often
resides beyond the spatial domain. Kiruthika and
Masilamani [29] demonstrated that image quality
assessment (IQA) features derived from both
spatial and frequency domains can effectively
distinguish real and fake faces, even when visual
differences are minimal. Similarly, Salman and
Abu Naser [30] found ResNet50 to be the most
effective architecture after extensive training on
large-scale datasets.

Recent research has increasingly adopted
transformer-based architectures due to their ability
to model long-range dependencies and contextual
relationships across facial regions. Attention
driven  methods have shown improved
performance in detecting subtle inconsistencies in
high quality manipulations, in face reenactment
and diffusion-based deepfakes [10]. However,
transformer heavy models often  require
substantial computational resources which limits
their deployment in real world and resource
constrained environments.

To address computational constraints, recent
studies have explored lightweight detection
architectures suitable for edge devices. MobileViT,
introduced by Rastegari et al., combines
convolutional inductive biases with global
attention mechanisms, achieving an effective
balance between efficiency and accuracy. While
MobileViT [13] has demonstrated strong
performance in general vision tasks, its application
to deepfake detection remains relatively
underexplored. Early investigations suggest that
mobile friendly vision transformers could enable
scalable, energy efficient detection systems for real
time and embedded applications [14].
Ensembling techniques have been proposed to
improve robustness and generalization. Silva et al.
[31] introduced an explainable hierarchical
ensemble of weakly supervised models,
demonstrating improved performance across
diverse manipulation types. Explainable Al (XAI)
approaches are increasingly emphasized to
enhance transparency and trust in detection
systems such as high stakes applications such as
legal and forensic analysis [14, 32].

The existing literature shows that, although
deepfake detection methods have improved a lot,
their accuracy is still not reliable in real world
scenarios. Many models work well on controlled
benchmark datasets but fail when tested on new,
unseen, or real online content. The rapid progress
of generative models, especially diffusion based
methods, has made deepfakes more realistic and
harder to detect. Also, it reduces the effectiveness
of traditional cues and even advanced deep
learning models. In addition, many high
performing approaches are computationally
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expensive and difficult to deploy in practical or
resource limited environments. These limitations
clearly indicate that current methods are not yet
sufficient for robust and dependable deepfake
detection. Therefore, the proposed methodology
is introduced to address these challenges by
improving detection accuracy, generalization, and
practical usability in real world conditions.
Materials and Methods

Dataset

Real Faces

In this research study, the dataset used for
experimentation is from Kaggle, a widely
recognized platform for diverse datasets. The
dataset comprises a total of 2,041 images,
including 1,081 real images and 960 manipulated
or fake images. The dataset is available at
https://www kaggle.com/datasets/ciplab/real-
and-fake-face-detection. Fig. 1 shows some real face
images and fake face images.

el W

Falke Faces

Fig 1: Sample Real and Fake face images from dataset.

To enhance the models training and
generalization capabilities, data augmentation
techniques  were  employed. The data
augmentation process involves the creation of
augmented versions of the images through various
transformations, such as rotation, scaling, and
flipping. This augmentation not only expands the
dataset size but also introduces variability. Data
augmentation helps the model in learning diverse
features and patterns inherent in both real and
manipulated facial images. These augmentation
techniques are used to enhance the diversity of the
training dataset. By flipping images horizontally
and applying random rotations, the model
becomes more robust and better able to handle
variations in orientation and position. The specific
parameters, such as the degree of rotation and

probability of flipping, can be adjusted based on
the characteristics of the dataset and the desired
augmentation level.

Proposed Methodology

The proposed methodology establishes a deepfake
detection system by using pre-trained backbone
architecture of MobileViT. Image data is initially
processed and augmented before being fed into
the backbone to extract complementary, high-
dimensional features. These feature vectors are
then passed to a classification head for the
classification of real and fake faces. The model's
final performance is validated on a test set. Figure
2 shows the proposed architecture diagram of the
proposed model.
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Fig 2. Proposed Architecture Diagram for real and fake face classification.

The proposed framework for real and fake facial
image classification is built upon a carefully
designed data preparation and augmentation
pipeline to ensure robust learning and
generalization. Initially, the dataset is organized
into two distinct classes, real and fake images. A
PyTorch Dataset class is employed to efficiently
load and preprocess images in a batch-wise
manner. The batch size ensures optimal memory
utilization and faster data throughput. During
training, data augmentation techniques are
applied to increase variability and prevent
overfitting. These include random horizontal flips,

rotations, affine transformations, as well as
brightness and contrast adjustments. Such
augmentations simulate diverse real world

scenarios, helping the model generalize better to
unseen manipulations. For validation and test
datasets, a simpler preprocessing approach is
adopted, involving only resizing to the standard
224 = 224 input size and normalization, thereby
ensuring that evaluation metrics accurately reflect

model performance without
induced bias.

At the core of the framework lies the MobileViT
architecture, a hybrid model that combines the
strengths of convolutional neural networks
(CNNs) with transformer-based self-attention
mechanisms. The CNN layers are particularly
effective at capturing local spatial features, such as
subtle texture inconsistencies and edges, which are
often indicative of facial forgeries. The
transformer blocks, on the other hand, allow the
model to capture longrange dependencies and
global contextual information, enabling it to
reason across the entire image. This combination
ensures that both localized artifacts and broader
structural inconsistencies are considered during
classification. The model is initialized with
ImageNet pre-trained weights, leveraging transfer
learning to reduce the dependency on large
labeled datasets and accelerate convergence. The
original classification head of the MobileViT
backbone is replaced with a task-specific multilayer

augmentation-
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perceptron  (MLP)  designed for binary
classification. The MLP consists of batch
normalization layers, ReLU activation functions,
and dropout layers, which collectively enhance
regularization, prevent overfitting, and improve
the discriminative power of the learned features.
The MobileViT backbone itself is organized into
multiple stages, starting with a convolutional stem
that reduces the spatial dimensions of the input
image from 224 x 224 to 112 x 112 while
producing 64 feature channels. Subsequent stages
consist of a combination of MobileNetV2 blocks
and MobileViT transformer blocks. Notably,
stages O and 1 use MobileNetV2 blocks to extract
128 and 256 output channels, respectively,
gradually reducing the spatial dimensions to 56 x
56 and 28 x 28. Stages 2 through 4 employ
MobileViT blocks with progressively higher
transformer dimensions (144, 192, and 256) and
increasing output channels (512, 1024, and 2048),
while reducing the spatial dimensions to 28 x 28,
14 x 14, and 7 x 7. Features from the final stage
(features[-1] of stage 4) are used as the
representation  vector, yielding a = 2048-
dimensional feature vector before the pooling
layer. This rich feature representation forms the
foundation  for  the  classifier.  Feature
representations ensure that both high-level
semantic and low-level texture features contribute
to distinguishing real and fake faces.

The training follows a two-stage optimization
process to ensure stable and effective learning.
Initially, all parameters of the MobileViT
backbone are frozen, and only the newly added
classifier head is trained for the first five epochs
using a relatively higher learning rate of 1 x 1075,
This stage allows the classifier to rapidly adapt to
the target task without disrupting the pre-trained
representations of the backbone. Following this, a
progressive unfreezing strategy is implemented.
Unfreezing gradually enables gradient updates for
selected deeper layers of the backbone while
maintaining a lower learning rate for these
parameters. This fine-tuning approach ensures
that higher-level features are adjusted for forgery
detection without catastrophic forgetting of the
general visual representations learned from
ImageNet. Optimization is performed using the

AdamW  optimizer, complemented by a
ReduceLROnPlateau learning rate scheduler,
which dynamically lowers the learning rate when
performance plateaus. The model is trained for a
total of 30 epochs with a batch size of 16. These
hyperparameters shown in Table 1 ensure a
balanced  trade-off between computational
efficiency and convergence stability.

To further enhance robustness and reduce the
model’s overreliance on global image patterns,
CutMix regularization is incorporated during
training. With a fixed probability for each batch,
image regions are exchanged between samples,
and their corresponding labels are mixed
proportionally using a beta distribution. This
encourages the model to focus on localized
inconsistencies such as texture anomalies,
blending artifacts, or subtle distortions.
Combined with dropout in the classifier layers,
CutMix significantly improves the generalization
performance of the model. This makes the model
more resilient to novel or previously unseen
forgery methods. This combination of
sophisticated regularization techniques ensures
that the model develops a fine-grained
understanding of facial integrity, rather than
memorizing spurious correlations in the training
data.

Beyond the core training and augmentation
strategies, the architectural choice of MobileViT
provides several practical advantages for real world
deployment. MobileViT models are lightweight,
computationally efficient, and optimized for
mobile and edge devices. These characteristics
make them suitable for scenarios where rapid and
resource constrained inference is necessary.
Despite their efficiency, the hybrid CNN-
transformer design allows them to capture both
local and global features, striking a balance
between performance and computational cost.
Leveraging pre-trained weights ensures that the
network starts from a strong initialization. The
network continues by reducing the number of
required training epochs and enabling reliable
performance even with moderately sized datasets.
Finally, the integration of task-specific
modifications, including the classifier MLP with
dropout, batch normalization, and RelLU
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activations, ensures that the model is fully tuned
for binary classification while maintaining
generalization. The combination of staged
optimization, regularization through CutMix, and
progressive fine-tuning allows the system to extract
meaningful features from real and fake faces

efficiently and accurately. Together, these design
choices form a comprehensive, robust framework
capable of addressing the increasingly
sophisticated nature of facial forgeries, while
remaining practical for deployment in real-world
applications.

Table 1: Hyperparameters used for the model training.

Parameter Value
Image Size 224 x 224
Epochs 30

Batch Size 16
Optimizer AdamW
Learning Rate 1x107°

Results and Discussion:

To evaluate the effectiveness of the proposed
MobileViT-based framework, a series of
experiments were conducted to measure its ability
to distinguish real and fake facial images. The
overall objective of these experiments was to assess
the model's learning capacity and its
generalization to unseen data to ensure reliability
in practical deployment. All experimentation was
performed using Google Colab with a T4 GPU,
which  provided sufficient computational
resources to train the model efficiently while
allowing the testing of different hyperparameter
configurations and regularization techniques
without significant time constraints.

The performance of the model is assessed through
training, validation, and test accuracies, which
collectively provide a comprehensive view of its

learning behavior and generalization ability.
During training, the model achieves an accuracy of
85.37% which indicates that it successfully learns
discriminative features from the training dataset
and adapts effectively to the task of detecting facial
forgeries. The validation accuracy, measured at
83.79%, demonstrates that the model generalizes
well to data not seen during training which
suggests that overfitting is limited and the learned
features are robust. Finally, the model achieves a
test accuracy of 83.68%, confirming its capability
to maintain consistent performance when applied
to completely unseen images, which is critical for
real world applications in detecting manipulated
facial content. The progression of training,
validation, and testing accuracies is illustrated in
Figure 3, highlighting stable convergence and
effective adaptation.
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Fig 3: Accuracies achieved for training, validation and testing of proposed model.

In addition to overall accuracy, precision, recall,
and Fl-score are employed to provide a more
nuanced evaluation of the model’s class wise
performance and its ability to distinguish between
real and fake facial images. These metrics offer
insight into both the correctness of predictions
and the model’s sensitivity to each class, which is
particularly important in binary classification tasks
where imbalances or subtle differences may exist.
For the Real class, the model achieves a precision
of 0.82 and a recall of 0.84 which indicates that
most real images are correctly identified while
maintaining a relatively low false-positive rate.
This suggests that the model is effective at
minimizing the misclassification of fake images as
real, which is crucial for applications that require
reliable identification of authentic content. For
the Fake class, the model attains a precision of
0.85 and a recall of 0.83 which demonstrates
robust capability in detecting manipulated or
forged images. The slightly higher precision for the
Fake class indicates that the model is particularly
conservative when labeling an image as fake,
reducing the likelihood of incorrectly flagging real
images.

The overall balance of the model’s performance is
further highlighted by the macro-average and
weighted Fl-score, both of which are 0.84. The

macro-average Fl-score provides an unweighted

evaluation across both classes, reflecting that the
model  maintains  consistent  performance
irrespective of class distribution. The weighted F1-
score accounts for the relative number of samples
in each class to ensure that the evaluation is
representative even if one class is slightly more
prevalent. Together, these metrics demonstrate
that the model not only achieves high accuracy but
also maintains equitable performance across both
real and fake classes. This indicates that it does not
favor one class over the other. This balanced
performance is critical for real world scenarios,
where misclassifying fake images as real or vice
versa can have significant implications, such as in
security, forensic analysis, and media verification.
These detailed evaluation results, summarized in
Table 2, underscore the effectiveness of the
MobileViT-based framework in capturing subtle
discrepancies between real and manipulated facial
images. By wusing the hybrid convolutional
transformer  architecture and incorporating
strategies such as CutMix regularization,
progressive  fine-tuning, and robust data
augmentation, the model is able to learn rich
feature representations that generalize well across
different types of facial manipulations. The results
indicate that the model can detect forgery artifacts
reliably while avoiding over-reliance on superficial
cues which makes it suitable for deployment in
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practical face verification and forgery detection
systems. Overall, the combination of accuracy,

comprehensive evaluation that confirms the
robustness, fairness, and reliability of the

precision, recall, and Fl-score presents a proposed framework.
Table 2: Detailed classification results of proposed model.
Metric Precision Recall Fl-score
Real 0.82 0.84 0.83
Fake 0.85 0.83 0.84
Macro avg 0.84 0.84 0.84
Weighted avg 0.84 0.84 0.84

The training and validation accuracy curves
provide a clear insight into the learning behavior
and generalization capability of the proposed
MobileViT-based model. As depicted in Figure 4,
both training and validation accuracies increase
steadily over the course of the 30 training epochs.
The validation accuracy closely follows the
trajectory of the training accuracy, indicating that
the model is consistently improving on unseen
data as it learns from the training set. The smooth
and gradual rise of these curves demonstrates
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backbone successfully prevent overfitting. The
accuracy curves highlight the model’s ability to
stable learning while improving
performance on both real and fake facial image
classification tasks.
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Fig 4: Training and Validation Accuracy curves, Training - Validation Accuracy gap and Convergence
Pattern.
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The training and validation loss curves, shown in
Figure 5, further support these observations by
illustrating the reduction in prediction errors over
time. Both curves decrease consistently across the
epochs, with the validation loss closely tracking
the training loss throughout the training process.
This steady decline indicates stable convergence
and suggests that the model is effectively
minimizing the classification error without
becoming overly specialized to the training data.
The close alignment between training and

Training and Validation Loss
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0.2 4

Loss

0 5 10 15 20 25 30
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0.10 4
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validation loss reinforces that the applied
techniques and including careful learning rate
scheduling with ReduceLROnPlateau, staged
optimization, and robust data augmentation
enable the model to generalize well. These loss
curves, together with the accuracy curves, provide
a comprehensive understanding of the model’s
learning dynamics and confirm that it achieves a
reliable balance between accurate training
performance and strong generalization on unseen
samples.
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Fig 5: Training and Validation Loss curves, Training - Validation Loss gap and Loss Convergence
Pattern.

The confusion matrix provides a detailed view of
the model’s classwise prediction behavior,
offering insight beyond overall accuracy metrics.
As illustrated in Figure 6, the proposed
MobileViT-based model correctly identifies
84.25% of real images and 83.15% of fake images,

demonstrating a well-balanced performance across

both classes. Misclassification rates remain
relatively low, with 15.75% of real images
incorrectly predicted as fake and 16.85% of fake
images misclassified as real. These errors are
understandable given the inherent difficulty of
deepfake detection, where manipulated images
often contain subtle visual artifacts that are
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challenging to discern even for state-of-theart
models.

The nearssymmetry of the confusion matrix
reflects that the model does not favor one class
over the other, indicating minimal class bias and
consistent  discriminative  capability.  Such
balanced performance is particularly important for
real-world applications, where both false positives
(misclassifying real faces as fake) and false
negatives (failing to detect manipulated images)

84.25%

Real

True Label

16.85%

Fake
I

1
Real

can have significant consequences. By correctly
capturing  this  equilibrium, the  model
demonstrates its ability to generalize effectively
across diverse samples while maintaining
sensitivity to the nuanced differences between
authentic and manipulated facial features. The
confusion matrix reinforces the reliability and
fairness of the proposed framework for binary face
forgery detection tasks.

15.75%

-0.4

83.15%

-0.3

-0.2

Fake

Predicted Label

Fig 6: Confusion matrix representing model performance.

Table 3 presents a comparative analysis of the
proposed model against several state-of-the-art
deepfake detection approaches reported in recent
studies. Earlier CNN based models such as
VGG16 and ResNet50 reported accuracies of
62.60% and 72.63%. These accuracies shows
moderate performance. The integration of GAN
with ResNet50 improved accuracy to 82.98%
which highlights the benefit of advanced data
augmentation techniques. More recent methods,
such as Swin Transformer and open source

deepfake detectors, achieved accuracies of 71.29%
and 69.00%, respectively, but still lag behind the
top-performing models. In comparison, the
proposed MobileViT-based model achieves the
highest accuracy of 83.68%. The proposed model
outperformed all the compared approaches. This
demonstrates that the proposed method provides
better detection capability while maintaining
efficiency which makes it a strong alternative to
existing deepfake detection models.

Table 3: Comparative Analysis of Proposed model with state-of-the-art models.

Citation Year Technique / Model Accuracy (%)
(33] 2024 VGG16 62.60
(33] 2024 ResNet50 72.63
(33] 2024 ResNet50+GAN 82.98
[34] 2025 Swin Transformer 71.29
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(25] 2025

Open source deepfake detectors 69.00

Ours 2026 MobileViT

83.68

Despite the strong performance of the proposed
MobileViT-based framework, several limitations
should be acknowledged. First, the model is
trained and evaluated on static images, which may
limit its ability to fully capture temporal
inconsistencies or subtle motion artifacts that are
present in video-based deepfake detection
scenarios. Second, although extensive data
augmentation and regularization techniques were
employed, the framework may still struggle with
highly sophisticated manipulations or
adversarially generated forgeries that closely mimic
real facial textures. Third, the experiments were
conducted using a single GPU platform (Google
Colab T4), and while the model is lightweight and
efficient, scaling to very large datasets or real-time
applications may require further optimization or
deployment strategies. Finally, the current
framework relies solely on visual information,
potentially overlooking complementary
information such as audio inconsistencies or
multimodal correlations, which could further
enhance detection robustness in practical
applications.

The experimental results demonstrate that the
proposed MobileViT based framework achieves
reliable and consistent performance for real versus
fake face detection. By using the combination of a
lightweight hybrid transformer convolution
architecture, transfer learning from pre trained
weights, progressive fine tuning, and robust
regularization techniques such as dropout and
CutMix, the model effectively discriminates
between authentic and manipulated facial
content. These findings confirm that MobileViT,
despite being relatively underexplored in deepfake
detection, is a promising and efficient backbone
for this task. The framework not only achieves
strong performance on standard evaluation
metrics but also provides a flexible foundation for
future improvements. These improvements
include multimodal integration, temporal
modeling for video deepfakes, or further

architectural refinements to enhance robustness
against increasingly sophisticated manipulations.

Conclusion:

This paper presented a MobileViT-based deep
learning framework for real and fake face
detection. By using the hybrid architecture of
MobileViT, which combines convolutional
feature extraction with transformer-based global
context modeling, the proposed approach
effectively captures both local and global features
present in  manipulated  facial = images.
Experimental results demonstrate that the model
achieves strong and consistent performance, with
training, validation, and test accuracies exceeding
83%, along with balanced precision, recall, and
Fl-scores across both classes. These findings
confirm that MobileViT, despite being relatively
underexplored in deepfake detection research, is a
capable and efficient backbone for this task. The
results further highlight the effectiveness of the
proposed training strategy, including transfer
learning, progressive  unfreezing, CutMix
regularization, and adaptive learning rate
scheduling. Together, these techniques contribute
to  stable convergence and  improved
generalization, as shown in Figure 7 which clearly
shows higher accuracy when compared with state-
of-the-art methodologies. Despite these promising
results, certain limitations remain. The proposed
approach focuses solely on image-based deepfake
detection and does not consider temporal
inconsistencies present in video data. Also, while
MobileViT is computationally efficient, further
optimization may be required for deployment on
ultra-low-power devices. Future work will explore
extending the proposed framework to video-based
and multimodal deepfake detection by
incorporating temporal information and audio-
visual cues. Evaluating the model on larger and
more diverse datasets, as well as integrating
explainable Al  techniques to  improve
interpretability, are also promising directions.
These enhancements aim to further improve
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robustness,  transparency, and  real-world
applicability of MobileViT-based deepfake

detection systems.

Accuracy (%)

90
80

O O O O O O

[33] [33] [33]

70
6
5
4
3
2
1
0

[34] [25] Ours

Fig 7: Comparison of proposed model with existing state-of-the-art methods.
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