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Abstract 
Humans can normally recognize faces, but today’s advanced technology and 
artificial intelligence make it difficult to tell real faces from fake ones. Modern 
image editing tools and AI techniques can create very realistic fake face images. 
Because of this, people often struggle to identify whether a face image is real or 
artificially created. To solve this problem, deep learning techniques are increasingly 
being used because they provide more accurate and reliable results than human 
judgment. Although deep learning techniques have been widely explored, Vision 
Transformer architectures remain underexplored for fake face detection. This 
paper adopts the MobileViT architecture and enhances it with task-specific 
modifications to improve fake face detection performance. The proposed approach 
used the MobileViT architecture, which combines the strengths of convolutional 
neural networks and Vision Transformers. MobileViT effectively captures both 
local facial features through convolutional layers and global contextual 
information through transformer-based attention. This hybrid architecture makes 
it well suited for fake face detection. Experimental results demonstrate that the 
proposed MobileViT-based model outperforms baseline models. It achieved a 
training accuracy of 85.37%, validation accuracy of 83.79% and test accuracy 
of 83.68%. The study demonstrates that MobileViT architecture significantly 
improves fake face detection while maintaining computational and memory 
efficiency. This research has important applications in areas such as identity 
verification, social media content moderation, cybersecurity, and digital content 
authentication. Accurate detection of fake faces is critical in these domains, and 
the proposed MobileViT-based approach provides an effective and reliable solution 
for distinguishing real and manipulated facial images. 
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Introduction 
Digitally altered images and videos showing people 
with fake facial expressions have attracted 
significant public attention and criticism in recent 

years due to their potential to mislead and 
manipulate audiences [1]. These manipulated 
media, commonly known as deepfakes, are 
artificial intelligence (AI) generated images, audio, 
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and videos that appear realistic but are not 
genuine. Deep learning advancements have made 
creating deepfakes easier and more convincing 
than ever before. These advancements allow even 
non-experts to produce content that can deceive 
human observers. This rapid progress has 
intensified concerns about the societal impact of 
synthetic media. These concerns include threats to 
privacy, trust, and personal security [2]. According 
to recent surveys, deepfakes now present 
real-world challenges for both individuals and 
automated systems that attempts to verify 
authenticity [3]. 
Deepfakes pose serious risks, which includes 
misuse for disinformation, fraud, and 
non-consensual imagery. One of the earliest 
known cases of deepfakes occurred in December 
2017, when a Reddit user called “Deepfakes” used 
publicly available AI tools to create fake 
pornographic videos by replacing real faces with 
fabricated ones [4]. This incident demonstrated 
the harmful potential of deepfake technology and 
foreshadowed later waves of misuse. More 
recently, lawmakers have moved to address 
non-consensual deepfake content through 
legislation such as the Take It Down Act, passed 
in 2025, which requires online platforms to 
remove non-consensual intimate imagery within 
strict timeframes [5]. 
Deepfaking refers to the use of artificial 
intelligence to replace a person’s face in images or 
videos with another person’s face in a highly 
realistic way [6]. This type of synthetic media aims 
to mislead viewers or change the original meaning 
of the content. Most existing deepfake detection 
methods depend on feature extraction techniques 
and machine learning models, which 
automatically learn important patterns and 
features from data using advanced neural 
networks. However, significant challenges remain, 
such as the rapid improvement of deepfake 
generation methods, the lack of comprehensive 
real-world datasets, and the absence of standard 
benchmarks for evaluating detection systems [7]. 
Recent surveys emphasize that detection models 
often struggle when confronted with real or 
partially manipulated deepfakes outside 
controlled datasets [8].  

Generative Adversarial Networks (GANs) have 
been central to producing realistic fake media. A 
GAN consists of a generator that synthesizes fake 
images and a discriminator that attempts to 
distinguish real from fake [9]. While GANs have 
enabled the creation of highly convincing media, 
humans often find it difficult to detect such 
content without specialized tools [10]. 
Consequently, the development of reliable 
deepfake detection systems remains a critical 
research challenge. Existing deep learning-based 
detectors achieve high accuracy in controlled 
settings, but their performance often drops when 
applied to unseen datasets or sophisticated 
deepfake variants [11]. 
Recent research has focused on transformer-based 
architectures due to their ability to capture long-
range dependencies and contextual information 
in images [12]. One such architecture, Mobile 
Vision Transformer (MobileViT), combines the 
local feature extraction capabilities of 
convolutional neural networks with the global 
context modeling power of transformers. This 
hybrid design allows MobileViT to maintain a 
lightweight structure suitable for resource-
constrained environments while preserving high 
accuracy in visual tasks [13]. Despite its potential, 
MobileViT remains largely underexplored in the 
domain of deepfake detection, with only a few 
studies evaluating its effectiveness for detecting 
manipulated media [14]. 
In this work, we propose a MobileViT-based 
deepfake detection framework that leverages the 
architecture’s ability to capture both fine-grained 
texture details and global image context. Our 
approach aims to improve accuracy against a wide 
variety of deepfake generation techniques and 
minimize the computational resources. The use of 
MobileViT not only addresses computational 
efficiency but also opens a promising direction for 
deploying deepfake detection models on devices 
with limited resources, such as mobile phones and 
edge devices. 
Objectives 
The main objective of this research are as follows: 

1. To design and implement a MobileViT 
based model for real and fake face 
classification to capture both local facial 
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features and global contextual 
information. 

2. To evaluate the performance of the 
proposed MobileViT architecture against 
baseline deep learning models to assess its 
effectiveness in detecting AI-generated 
and manipulated facial images. 

3. To analyze the efficiency and practicality 
of the MobileViT-based approach for fake 
face detection. 

Literature Review 
The concept of face manipulation predates 
modern digital technologies, with one of the 
earliest documented cases dating back to 1860, 
when a portrait of Southern leader John C. 
Calhoun was altered by replacing his head with 
that of a U.S. President for propaganda purposes 
[15]. Early image manipulation relied heavily on 
manual techniques such as splicing, painting, and 
copy move operations, often followed by post-
processing steps including scaling, rotation, and 
color adjustments. While these methods required 
significant skill and effort, they laid the 
foundation for contemporary manipulation 
practices. With advancements in computer 
graphics and machine learning (ML) techniques, 
image tampering has become increasingly 
automated and semantically consistent. These 
advancements have lowered the barrier for 
creating convincing manipulations and 
significantly expanding their societal impact [16]. 
Face-swapping represents a specific and highly 
impactful form of image and video tampering. The 
first widely recognized deepfake appeared in 2017, 
when a Reddit user known as “deepfake” released 
manipulated celebrity videos created using 
encoder–decoder architectures [17]. These early 
methods relied on two autoencoders sharing a 
latent space which requires extensive training data 
and substantial computational resources. Despite 
these limitations, face-swapping rapidly gained 
popularity and became the foundational deepfake 
technique. These techniques inspired applications 
such as FakeApp, FaceSwap, and Deepnude by 
2019 [18]. Multimedia manipulation strategies are 
now commonly categorized into copy move, 
splicing, deepfake generation, and resampling. 

These strategies reflect the increasing diversity of 
attack vectors in digital media [19]. 
Beyond traditional face swapping, face 
reenactment techniques such as Face2Face [20] 
introduced a new paradigm by transferring facial 
expressions and head movements from a source 
actor to a target while preserving the target’s 
identity. Face2Face enables real-time facial 
reconstruction and expression synchronization 
which results in highly realistic output videos that 
are difficult to distinguish from authentic content. 
Unlike simple face replacement, reenactment 
techniques manipulate subtle facial dynamics 
which make detection more challenging. This 
evolution underscores the need for detection 
methods specifically designed to address facial 
motion inconsistencies rather than relying solely 
on global image artifacts [21]. 
The rapid advancement of deep generative 
models, particularly Generative Adversarial 
Networks (GANs) [22] and more recently 
diffusion models, has dramatically increased the 
realism of deepfakes. These technologies pose 
serious threats to digital trust, privacy, and 
security. International organizations such as 
UNESCO have identified deepfakes as a major 
contributor to the “crisis of knowing,”. Policy 
responses, including legislative initiatives such as 
the TAKE IT DOWN Act [5, 23], further reflect 
the growing recognition of deepfakes as a societal 
risk. Surveys published between 2024 and 2025 
indicate that modern generative models can now 
produce images and videos that are nearly 
indistinguishable from authentic media, even 
under forensic analysis [6]. 
Despite significant progress in deep learning based 
detection, generalization remains one of the most 
critical challenges. Many detection models achieve 
high accuracy on constrained benchmark datasets 
but experience severe performance degradation 
when applied to unseen datasets or real world 
content [7]. This issue is exacerbated by diffusion 
based generative models, which reduce or 
eliminate many of the visual artifacts traditionally 
exploited by forensic algorithms. As a result, 
recent research emphasizes robustness, 
explainability, and cross-dataset evaluation as 
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essential components of reliable deepfake 
detection systems [24]. 
To address the gap between laboratory 
benchmarks and real world conditions, new 
datasets have been introduced. The Deepfake-
Eval-2024 [25] benchmark represents a significant 
advancement by providing a multimodal dataset 
that reflects how deepfakes are actually circulated 
online. Such datasets enable more realistic 
evaluation of detection models and encourage the 
development of systems that can operate 
effectively under diverse and uncontrolled 
conditions. 
Early deepfake detection methods focused on 
handcrafted features and traditional forensic cues 
such as metadata analysis, Error Level Analysis 
(ELA), and JPEG compression artifacts. Tools like 
FotoForensics and MMC employ these 
techniques, but they are easily bypassed by 
sophisticated attackers and are ineffective against 
GAN-generated images [26]. Consequently, 
researchers shifted toward convolutional neural 
networks (CNNs), which demonstrated superior 
performance in capturing texture and frequency-
domain artifacts. Tariq et al. [27] pioneered the 
use of neural networks to detect GAN-generated 
fake faces by analyzing statistical image 
components. Subsequent studies, including Wang 
et al. [26], proposed LBP-Net and ensemble 
models combining texture-based and deep 
features. 
Several comparative studies have evaluated the 
effectiveness of popular CNN architectures for 
fake face detection. Taeb et al. [28] reported that 
VGG19 achieved the highest accuracy (95%) on 
the “140K Real and Fake Faces” dataset when 
combined with data augmentation. Other 
researchers explored frequency-domain cues, 
arguing that discriminative information often 
resides beyond the spatial domain. Kiruthika and 
Masilamani [29] demonstrated that image quality 
assessment (IQA) features derived from both 
spatial and frequency domains can effectively 
distinguish real and fake faces, even when visual 
differences are minimal. Similarly, Salman and 
Abu Naser [30] found ResNet50 to be the most 
effective architecture after extensive training on 
large-scale datasets. 

Recent research has increasingly adopted 
transformer-based architectures due to their ability 
to model long-range dependencies and contextual 
relationships across facial regions. Attention 
driven methods have shown improved 
performance in detecting subtle inconsistencies in 
high quality manipulations, in face reenactment 
and diffusion-based deepfakes [10]. However, 
transformer heavy models often require 
substantial computational resources which limits 
their deployment in real world and resource 
constrained environments. 
To address computational constraints, recent 
studies have explored lightweight detection 
architectures suitable for edge devices. MobileViT, 
introduced by Rastegari et al., combines 
convolutional inductive biases with global 
attention mechanisms, achieving an effective 
balance between efficiency and accuracy. While 
MobileViT [13] has demonstrated strong 
performance in general vision tasks, its application 
to deepfake detection remains relatively 
underexplored. Early investigations suggest that 
mobile friendly vision transformers could enable 
scalable, energy efficient detection systems for real 
time and embedded applications [14]. 
Ensembling techniques have been proposed to 
improve robustness and generalization. Silva et al. 
[31] introduced an explainable hierarchical 
ensemble of weakly supervised models, 
demonstrating improved performance across 
diverse manipulation types. Explainable AI (XAI) 
approaches are increasingly emphasized to 
enhance transparency and trust in detection 
systems such as high stakes applications such as 
legal and forensic analysis [14, 32]. 
The existing literature shows that, although 
deepfake detection methods have improved a lot, 
their accuracy is still not reliable in real world 
scenarios. Many models work well on controlled 
benchmark datasets but fail when tested on new, 
unseen, or real online content. The rapid progress 
of generative models, especially diffusion based 
methods, has made deepfakes more realistic and 
harder to detect. Also, it reduces the effectiveness 
of traditional cues and even advanced deep 
learning models. In addition, many high 
performing approaches are computationally 
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expensive and difficult to deploy in practical or 
resource limited environments. These limitations 
clearly indicate that current methods are not yet 
sufficient for robust and dependable deepfake 
detection. Therefore, the proposed methodology 
is introduced to address these challenges by 
improving detection accuracy, generalization, and 
practical usability in real world conditions. 
Materials and Methods 
Dataset 

In this research study, the dataset used for 
experimentation is from Kaggle, a widely 
recognized platform for diverse datasets. The 
dataset comprises a total of 2,041 images, 
including 1,081 real images and 960 manipulated 
or fake images. The dataset is available at 
https://www.kaggle.com/datasets/ciplab/real-
and-fake-face-detection. Fig. 1 shows some real face 
images and fake face images. 

 

 
Fig 1: Sample Real and Fake face images from dataset. 

 
To enhance the model's training and 
generalization capabilities, data augmentation 
techniques were employed. The data 
augmentation process involves the creation of 
augmented versions of the images through various 
transformations, such as rotation, scaling, and 
flipping. This augmentation not only expands the 
dataset size but also introduces variability. Data 
augmentation helps the model in learning diverse 
features and patterns inherent in both real and 
manipulated facial images. These augmentation 
techniques are used to enhance the diversity of the 
training dataset. By flipping images horizontally 
and applying random rotations, the model 
becomes more robust and better able to handle 
variations in orientation and position. The specific 
parameters, such as the degree of rotation and 

probability of flipping, can be adjusted based on 
the characteristics of the dataset and the desired 
augmentation level. 
 
Proposed Methodology 
The proposed methodology establishes a deepfake 
detection system by using pre-trained backbone 
architecture of MobileViT. Image data is initially 
processed and augmented before being fed into 
the backbone to extract complementary, high-
dimensional features. These feature vectors are 
then passed to a classification head for the 
classification of real and fake faces. The model's 
final performance is validated on a test set. Figure 
2 shows the proposed architecture diagram of the 
proposed model. 
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Fig 2. Proposed Architecture Diagram for real and fake face classification. 

 
The proposed framework for real and fake facial 
image classification is built upon a carefully 
designed data preparation and augmentation 
pipeline to ensure robust learning and 
generalization. Initially, the dataset is organized 
into two distinct classes, real and fake images. A 
PyTorch Dataset class is employed to efficiently 
load and preprocess images in a batch-wise 
manner. The batch size ensures optimal memory 
utilization and faster data throughput. During 
training, data augmentation techniques are 
applied to increase variability and prevent 
overfitting. These include random horizontal flips, 
rotations, affine transformations, as well as 
brightness and contrast adjustments. Such 
augmentations simulate diverse real world 
scenarios, helping the model generalize better to 
unseen manipulations. For validation and test 
datasets, a simpler preprocessing approach is 
adopted, involving only resizing to the standard 
224 × 224 input size and normalization, thereby 
ensuring that evaluation metrics accurately reflect 

model performance without augmentation-
induced bias. 
At the core of the framework lies the MobileViT 
architecture, a hybrid model that combines the 
strengths of convolutional neural networks 
(CNNs) with transformer-based self-attention 
mechanisms. The CNN layers are particularly 
effective at capturing local spatial features, such as 
subtle texture inconsistencies and edges, which are 
often indicative of facial forgeries. The 
transformer blocks, on the other hand, allow the 
model to capture long-range dependencies and 
global contextual information, enabling it to 
reason across the entire image. This combination 
ensures that both localized artifacts and broader 
structural inconsistencies are considered during 
classification. The model is initialized with 
ImageNet pre-trained weights, leveraging transfer 
learning to reduce the dependency on large 
labeled datasets and accelerate convergence. The 
original classification head of the MobileViT 
backbone is replaced with a task-specific multilayer 
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perceptron (MLP) designed for binary 
classification. The MLP consists of batch 
normalization layers, ReLU activation functions, 
and dropout layers, which collectively enhance 
regularization, prevent overfitting, and improve 
the discriminative power of the learned features. 
The MobileViT backbone itself is organized into 
multiple stages, starting with a convolutional stem 
that reduces the spatial dimensions of the input 
image from 224 × 224 to 112 × 112 while 
producing 64 feature channels. Subsequent stages 
consist of a combination of MobileNetV2 blocks 
and MobileViT transformer blocks. Notably, 
stages 0 and 1 use MobileNetV2 blocks to extract 
128 and 256 output channels, respectively, 
gradually reducing the spatial dimensions to 56 × 
56 and 28 × 28. Stages 2 through 4 employ 
MobileViT blocks with progressively higher 
transformer dimensions (144, 192, and 256) and 
increasing output channels (512, 1024, and 2048), 
while reducing the spatial dimensions to 28 × 28, 
14 × 14, and 7 × 7. Features from the final stage 
(features[-1] of stage 4) are used as the 
representation vector, yielding a 2048-
dimensional feature vector before the pooling 
layer. This rich feature representation forms the 
foundation for the classifier. Feature 
representations ensure that both high-level 
semantic and low-level texture features contribute 
to distinguishing real and fake faces. 
The training follows a two-stage optimization 
process to ensure stable and effective learning. 
Initially, all parameters of the MobileViT 
backbone are frozen, and only the newly added 
classifier head is trained for the first five epochs 
using a relatively higher learning rate of 1 × 10⁻⁵. 
This stage allows the classifier to rapidly adapt to 
the target task without disrupting the pre-trained 
representations of the backbone. Following this, a 
progressive unfreezing strategy is implemented. 
Unfreezing gradually enables gradient updates for 
selected deeper layers of the backbone while 
maintaining a lower learning rate for these 
parameters. This fine-tuning approach ensures 
that higher-level features are adjusted for forgery 
detection without catastrophic forgetting of the 
general visual representations learned from 
ImageNet. Optimization is performed using the 

AdamW optimizer, complemented by a 
ReduceLROnPlateau learning rate scheduler, 
which dynamically lowers the learning rate when 
performance plateaus. The model is trained for a 
total of 30 epochs with a batch size of 16. These 
hyperparameters shown in Table 1 ensure a 
balanced trade-off between computational 
efficiency and convergence stability. 
To further enhance robustness and reduce the 
model’s over-reliance on global image patterns, 
CutMix regularization is incorporated during 
training. With a fixed probability for each batch, 
image regions are exchanged between samples, 
and their corresponding labels are mixed 
proportionally using a beta distribution. This 
encourages the model to focus on localized 
inconsistencies such as texture anomalies, 
blending artifacts, or subtle distortions. 
Combined with dropout in the classifier layers, 
CutMix significantly improves the generalization 
performance of the model. This makes the model 
more resilient to novel or previously unseen 
forgery methods. This combination of 
sophisticated regularization techniques ensures 
that the model develops a fine-grained 
understanding of facial integrity, rather than 
memorizing spurious correlations in the training 
data. 
Beyond the core training and augmentation 
strategies, the architectural choice of MobileViT 
provides several practical advantages for real world 
deployment. MobileViT models are lightweight, 
computationally efficient, and optimized for 
mobile and edge devices. These characteristics 
make them suitable for scenarios where rapid and 
resource constrained inference is necessary. 
Despite their efficiency, the hybrid CNN-
transformer design allows them to capture both 
local and global features, striking a balance 
between performance and computational cost. 
Leveraging pre-trained weights ensures that the 
network starts from a strong initialization.  The 
network continues by reducing the number of 
required training epochs and enabling reliable 
performance even with moderately sized datasets. 
Finally, the integration of task-specific 
modifications, including the classifier MLP with 
dropout, batch normalization, and ReLU 
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activations, ensures that the model is fully tuned 
for binary classification while maintaining 
generalization. The combination of staged 
optimization, regularization through CutMix, and 
progressive fine-tuning allows the system to extract 
meaningful features from real and fake faces 

efficiently and accurately. Together, these design 
choices form a comprehensive, robust framework 
capable of addressing the increasingly 
sophisticated nature of facial forgeries, while 
remaining practical for deployment in real-world 
applications. 

 
Table 1: Hyperparameters used for the model training. 

Parameter Value 

Image Size 224 × 224 

Epochs 30 

Batch Size 16 

Optimizer AdamW 

Learning Rate  1 × 10⁻⁵ 

 
Results and Discussion: 
To evaluate the effectiveness of the proposed 
MobileViT-based framework, a series of 
experiments were conducted to measure its ability 
to distinguish real and fake facial images. The 
overall objective of these experiments was to assess 
the model’s learning capacity and its 
generalization to unseen data to ensure reliability 
in practical deployment. All experimentation was 
performed using Google Colab with a T4 GPU, 
which provided sufficient computational 
resources to train the model efficiently while 
allowing the testing of different hyperparameter 
configurations and regularization techniques 
without significant time constraints. 
The performance of the model is assessed through 
training, validation, and test accuracies, which 
collectively provide a comprehensive view of its 

learning behavior and generalization ability. 
During training, the model achieves an accuracy of 
85.37% which indicates that it successfully learns 
discriminative features from the training dataset 
and adapts effectively to the task of detecting facial 
forgeries. The validation accuracy, measured at 
83.79%, demonstrates that the model generalizes 
well to data not seen during training which 
suggests that overfitting is limited and the learned 
features are robust. Finally, the model achieves a 
test accuracy of 83.68%, confirming its capability 
to maintain consistent performance when applied 
to completely unseen images, which is critical for 
real world applications in detecting manipulated 
facial content. The progression of training, 
validation, and testing accuracies is illustrated in 
Figure 3, highlighting stable convergence and 
effective adaptation. 
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Fig 3: Accuracies achieved for training, validation and testing of proposed model. 

 
In addition to overall accuracy, precision, recall, 
and F1-score are employed to provide a more 
nuanced evaluation of the model’s class wise 
performance and its ability to distinguish between 
real and fake facial images. These metrics offer 
insight into both the correctness of predictions 
and the model’s sensitivity to each class, which is 
particularly important in binary classification tasks 
where imbalances or subtle differences may exist. 
For the Real class, the model achieves a precision 
of 0.82 and a recall of 0.84 which indicates that 
most real images are correctly identified while 
maintaining a relatively low false-positive rate. 
This suggests that the model is effective at 
minimizing the misclassification of fake images as 
real, which is crucial for applications that require 
reliable identification of authentic content. For 
the Fake class, the model attains a precision of 
0.85 and a recall of 0.83 which demonstrates 
robust capability in detecting manipulated or 
forged images. The slightly higher precision for the 
Fake class indicates that the model is particularly 
conservative when labeling an image as fake, 
reducing the likelihood of incorrectly flagging real 
images. 
The overall balance of the model’s performance is 
further highlighted by the macro-average and 
weighted F1-score, both of which are 0.84. The 
macro-average F1-score provides an unweighted 

evaluation across both classes, reflecting that the 
model maintains consistent performance 
irrespective of class distribution. The weighted F1-
score accounts for the relative number of samples 
in each class to ensure that the evaluation is 
representative even if one class is slightly more 
prevalent. Together, these metrics demonstrate 
that the model not only achieves high accuracy but 
also maintains equitable performance across both 
real and fake classes. This indicates that it does not 
favor one class over the other. This balanced 
performance is critical for real world scenarios, 
where misclassifying fake images as real or vice 
versa can have significant implications, such as in 
security, forensic analysis, and media verification. 
These detailed evaluation results, summarized in 
Table 2, underscore the effectiveness of the 
MobileViT-based framework in capturing subtle 
discrepancies between real and manipulated facial 
images. By using the hybrid convolutional 
transformer architecture and incorporating 
strategies such as CutMix regularization, 
progressive fine-tuning, and robust data 
augmentation, the model is able to learn rich 
feature representations that generalize well across 
different types of facial manipulations. The results 
indicate that the model can detect forgery artifacts 
reliably while avoiding over-reliance on superficial 
cues which makes it suitable for deployment in 

75.00%

77.00%

79.00%

81.00%

83.00%

85.00%
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practical face verification and forgery detection 
systems. Overall, the combination of accuracy, 
precision, recall, and F1-score presents a 

comprehensive evaluation that confirms the 
robustness, fairness, and reliability of the 
proposed framework. 

 
Table 2: Detailed classification results of proposed model. 

Metric Precision Recall F1-score 
Real 0.82 0.84 0.83 
Fake 0.85 0.83 0.84 
Macro avg 0.84 0.84 0.84 
Weighted avg 0.84 0.84 0.84 

 
The training and validation accuracy curves 
provide a clear insight into the learning behavior 
and generalization capability of the proposed 
MobileViT-based model. As depicted in Figure 4, 
both training and validation accuracies increase 
steadily over the course of the 30 training epochs. 
The validation accuracy closely follows the 
trajectory of the training accuracy, indicating that 
the model is consistently improving on unseen 
data as it learns from the training set. The smooth 
and gradual rise of these curves demonstrates 

effective feature extraction and adaptation. The 
absence of sharp fluctuations or divergences 
suggests that the regularization strategies such as 
dropout in the classifier layers, CutMix 
augmentation, and progressive unfreezing of the 
backbone successfully prevent overfitting. The 
accuracy curves highlight the model’s ability to 
maintain stable learning while improving 
performance on both real and fake facial image 
classification tasks. 

 

 
Fig 4: Training and Validation Accuracy curves, Training – Validation Accuracy gap and Convergence 

Pattern. 
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The training and validation loss curves, shown in 
Figure 5, further support these observations by 
illustrating the reduction in prediction errors over 
time. Both curves decrease consistently across the 
epochs, with the validation loss closely tracking 
the training loss throughout the training process. 
This steady decline indicates stable convergence 
and suggests that the model is effectively 
minimizing the classification error without 
becoming overly specialized to the training data. 
The close alignment between training and 

validation loss reinforces that the applied 
techniques and including careful learning rate 
scheduling with ReduceLROnPlateau, staged 
optimization, and robust data augmentation 
enable the model to generalize well. These loss 
curves, together with the accuracy curves, provide 
a comprehensive understanding of the model’s 
learning dynamics and confirm that it achieves a 
reliable balance between accurate training 
performance and strong generalization on unseen 
samples. 

 

 
Fig 5: Training and Validation Loss curves, Training – Validation Loss gap and Loss Convergence 

Pattern. 
 

The confusion matrix provides a detailed view of 
the model’s class-wise prediction behavior, 
offering insight beyond overall accuracy metrics. 
As illustrated in Figure 6, the proposed 
MobileViT-based model correctly identifies 
84.25% of real images and 83.15% of fake images, 
demonstrating a well-balanced performance across 

both classes. Misclassification rates remain 
relatively low, with 15.75% of real images 
incorrectly predicted as fake and 16.85% of fake 
images misclassified as real. These errors are 
understandable given the inherent difficulty of 
deepfake detection, where manipulated images 
often contain subtle visual artifacts that are 
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challenging to discern even for state-of-the-art 
models. 
The near-symmetry of the confusion matrix 
reflects that the model does not favor one class 
over the other, indicating minimal class bias and 
consistent discriminative capability. Such 
balanced performance is particularly important for 
real-world applications, where both false positives 
(misclassifying real faces as fake) and false 
negatives (failing to detect manipulated images) 

can have significant consequences. By correctly 
capturing this equilibrium, the model 
demonstrates its ability to generalize effectively 
across diverse samples while maintaining 
sensitivity to the nuanced differences between 
authentic and manipulated facial features. The 
confusion matrix reinforces the reliability and 
fairness of the proposed framework for binary face 
forgery detection tasks. 

 

 
Fig 6: Confusion matrix representing model performance. 

 
Table 3 presents a comparative analysis of the 
proposed model against several state-of-the-art 
deepfake detection approaches reported in recent 
studies. Earlier CNN based models such as 
VGG16 and ResNet50 reported accuracies of 
62.60% and 72.63%. These accuracies shows 
moderate performance. The integration of GAN 
with ResNet50 improved accuracy to 82.98% 
which highlights the benefit of advanced data 
augmentation techniques. More recent methods, 
such as Swin Transformer and open source 

deepfake detectors, achieved accuracies of 71.29% 
and 69.00%, respectively, but still lag behind the 
top-performing models. In comparison, the 
proposed MobileViT-based model achieves the 
highest accuracy of 83.68%. The proposed model 
outperformed all the compared approaches. This 
demonstrates that the proposed method provides 
better detection capability while maintaining 
efficiency which makes it a strong alternative to 
existing deepfake detection models. 

 
Table 3: Comparative Analysis of Proposed model with state-of-the-art models. 

Citation Year Technique / Model Accuracy (%) 
[33] 2024 VGG16 62.60 
[33] 2024 ResNet50 72.63 
[33] 2024 ResNet50+GAN 82.98 
[34] 2025 Swin Transformer  71.29 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7022


Policy Research Journal  
ISSN (E): 3006-7030 ISSN (P) : 3006-7022  Volume 4, Issue 1, 2026 
 

https://policyrj.com            | Eman et al., 2026 | Page 51 

[25] 2025 Open source deepfake detectors 69.00 
Ours 2026 MobileViT 83.68 

 
Despite the strong performance of the proposed 
MobileViT-based framework, several limitations 
should be acknowledged. First, the model is 
trained and evaluated on static images, which may 
limit its ability to fully capture temporal 
inconsistencies or subtle motion artifacts that are 
present in video-based deepfake detection 
scenarios. Second, although extensive data 
augmentation and regularization techniques were 
employed, the framework may still struggle with 
highly sophisticated manipulations or 
adversarially generated forgeries that closely mimic 
real facial textures. Third, the experiments were 
conducted using a single GPU platform (Google 
Colab T4), and while the model is lightweight and 
efficient, scaling to very large datasets or real-time 
applications may require further optimization or 
deployment strategies. Finally, the current 
framework relies solely on visual information, 
potentially overlooking complementary 
information such as audio inconsistencies or 
multimodal correlations, which could further 
enhance detection robustness in practical 
applications. 
The experimental results demonstrate that the 
proposed MobileViT based framework achieves 
reliable and consistent performance for real versus 
fake face detection. By using the combination of a 
lightweight hybrid transformer convolution 
architecture, transfer learning from pre trained 
weights, progressive fine tuning, and robust 
regularization techniques such as dropout and 
CutMix, the model effectively discriminates 
between authentic and manipulated facial 
content. These findings confirm that MobileViT, 
despite being relatively underexplored in deepfake 
detection, is a promising and efficient backbone 
for this task. The framework not only achieves 
strong performance on standard evaluation 
metrics but also provides a flexible foundation for 
future improvements. These improvements 
include multimodal integration, temporal 
modeling for video deepfakes, or further 

architectural refinements to enhance robustness 
against increasingly sophisticated manipulations. 
 
Conclusion: 
This paper presented a MobileViT-based deep 
learning framework for real and fake face 
detection. By using the hybrid architecture of 
MobileViT, which combines convolutional 
feature extraction with transformer-based global 
context modeling, the proposed approach 
effectively captures both local and global features 
present in manipulated facial images. 
Experimental results demonstrate that the model 
achieves strong and consistent performance, with 
training, validation, and test accuracies exceeding 
83%, along with balanced precision, recall, and 
F1-scores across both classes. These findings 
confirm that MobileViT, despite being relatively 
underexplored in deepfake detection research, is a 
capable and efficient backbone for this task. The 
results further highlight the effectiveness of the 
proposed training strategy, including transfer 
learning, progressive unfreezing, CutMix 
regularization, and adaptive learning rate 
scheduling. Together, these techniques contribute 
to stable convergence and improved 
generalization, as shown in Figure 7 which clearly 
shows higher accuracy when compared with state-
of-the-art methodologies. Despite these promising 
results, certain limitations remain. The proposed 
approach focuses solely on image-based deepfake 
detection and does not consider temporal 
inconsistencies present in video data. Also, while 
MobileViT is computationally efficient, further 
optimization may be required for deployment on 
ultra-low-power devices. Future work will explore 
extending the proposed framework to video-based 
and multimodal deepfake detection by 
incorporating temporal information and audio-
visual cues. Evaluating the model on larger and 
more diverse datasets, as well as integrating 
explainable AI techniques to improve 
interpretability, are also promising directions. 
These enhancements aim to further improve 
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robustness, transparency, and real-world 
applicability of MobileViT-based deepfake 
detection systems.

 
Fig 7: Comparison of proposed model with existing state-of-the-art methods. 
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