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Abstract 
Water and air are the major sources of soil erosion occurs which usually cause 
soils to progressively disappear from its surface. To understand this phenomenon 
and to efficiently develop a management plan in District Kohat, Pakistan, this 
research was aimed to map soil erosion susceptibility across the district and to 
identify the associated factors using geospatial techniques.  Elevation, Slope 
aspect, curvature, land use, land cover, lithology, soil texture, rainfall, drainage, 
and roadways were among the characteristics that were the focus of the current 
study. ALOS, top sheets, land use land cover, the Geological Survey of Pakistan's 
soil structure map, and Google Earth pictures were some of the sources from which 
data was gathered for this study. All the layer was reclassified high weightage 
were given to the high influencing factor and low weightage were given to the low 
influencing factor. All the reclassified layers were then incorporated in the 
weighted overlay analysis. According to the study's findings, 4% of soil erosion 
happened in the District Kohat along center part of the drainage, but some areas 
saw remapping. This system will generate comprehensive vulnerability maps by 
utilizing machine learning algorithms, remote sensing techniques, and 
sophisticated geospatial data. Sustainable land management techniques, 
conservation programs, and land use planning will all be based on these maps. 
The produced maps enable erosion prevention and control strategies to be 
prioritized by giving decision makers access to relevant information. In the end, 
this project's vulnerability map will be a useful tool for sustainable development, 
land management, and conservation initiatives.  
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INTRODUCTION 
1.1 Background 
Soil erosion is the process by which soil is 

gradually removed from its surface due to external 
factors such as water or air (Maity et al., 2019). 
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Water, particularly through the force of raindrops 
and flowing water, is the primary cause of soil 
disintegration, involving phases like soil particle 
detachment, transportation, and sediment 
deposition (Jebur et al., 2014). This natural 
phenomenon significantly impacts ecosystems and 
alters soil properties, including its organic, 
physical, and chemical composition it’s widely 
recognized as a critical threat to soil sustainability, 
responsible for approximately 80% of global land 
degradation on agricultural land (Puente et al., 
2019). The effects are severe, ranging from 
decreased agricultural productivity to 
compromised water quality, increased landslide 
risks on steep terrain, and sediment deposition in 
reservoirs leading to heightened flood hazards and 
reduced hydro energy generation (Alexander et al., 
2012).Addressing these challenges necessitates 
sustainable management practices that involve 
measuring soil erosion, spatially mapping its 
distribution, and identifying vulnerable areas 
using susceptibility analysis (Koirala et al., 2019). 
Interrelated aspects such as precipitation, 
topography, soil characteristics, and LULC 
management contribute to land degradation 
(Yusof et al., 2014). Anthropogenic activities like 
urbanization, unsustainable farming methods, 
mining, and deforestation exacerbate soil 
degradation, placing additional strain on natural 
ecosystems (Smith et al., 2016). Processes like gully 
and rill erosion lead to sediment laden water, 
causing river channel erosion and further 
exacerbating soil loss along riverbanks, 
contributing to excessive erosion and 
sedimentation in floodplain areas (Sahaar et al., 
2013). Overall, soil erosion poses a significant 
global challenge, impacting agricultural 
productivity and ecosystem health by depleting 
topsoil nutrients and minerals. It's estimated that 
millions of acres of agricultural land are lost to 
erosion annually, resulting in decreased 
agricultural output and economic vulnerabilities. 
Globally, rates of soil loss exceed soil development 
rates by a factor of 10–40, posing threats to both 
food security and environmental integrity (Across 
Asia, the annual average soil loss rate is 29.95 
t/ha/y, highlighting the urgent need for soil 

conservation efforts (Price et al., 2014). Asian 
rivers contribute approximately eighty percent of 
the sediment discharged into the world's oceans 
(Naqvi et al., 2013). Exacerbating soil degradation 
and necessitating effective management strategies. 
Erosion susceptibility analysis evaluates the 
likelihood of erosion events based on past 
occurrences and causal factors (Ettazarini et al., 
2017).  
Water-induced soil erosion and land degradation 
are major environmental issues in Pakistan. 
According to Ashraf et al. (2017), 11.2 million 
hectares (M.ha) or 70% of Pakistan's land is 
impacted by water erosion, while the remaining 16 
million M.ha (approximately 20%) of land are 
affected by soil erosion. Topography, vegetation 
type, soil qualities, and land use are some of the 
elements that greatly impact the phenomenon of 
soil erosion. Nitrogen-rich topsoil is eroded by 
flash floods and leaf erosion, which significantly 
slows down plant growth. Additionally, more 
permeable subsurface layers cause more runoff, 
which restricts the amount of water available for 
plant growth. Additionally, because of eroded 
particles and sediment loading, erosion also has a 
number of off-site effects, such as poor water 
quality. In Pakistan's dry regions, agricultural 
disasters can arise from nutrient loss and soil 
deterioration brought on by water erosion. The 
scientific community continues to face challenges 
from the increased interest in protecting the socio-
agricultural ecosystem and maintaining water 
resources in arid places in order to prevent global 
food shortages. Pakistan's major source of erosion 
is water, and the province of Kohat Pakhtunkhwa 
is the most severely affected (Samina et al., 2010).  
This study approach to mapping soil erosion 
susceptibility is essential for effective mitigation 
and management. The objective of this project is 
to develop a robust and precise soil erosion 
susceptibility mapping system capable of 
identifying and forecasting erosion-prone areas 
within a designated geographical area. This system 
will leverage advanced geospatial data, remote 
sensing techniques, and machine learning 
algorithms to generate detailed susceptibility 
maps. These maps will inform land-use planning, 
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conservation initiatives, and sustainable land 
management practices. By providing decision-
makers with actionable insights, the resulting 
maps will enable the prioritization of erosion 
prevention and control measures. Ultimately, the 
susceptibility map produced by this project will 
serve as a valuable tool for land management, 
conservation efforts, and sustainable 
development. It will empower stakeholders to 
make informed decisions aimed at mitigating soil 
erosion and fostering sustainable land use 
practices. 
 
1.2 Statement of the Problem 
Soil erosion poses a significant environmental 
challenge, leading to land degradation and a 
decline in soil productivity (Liu et al., 2020). This 
erosion-induced soil degradation is a critical 
ecological issue with far-reaching impacts on the 
environment, water quality, crop yields, and land 
resilience. Reduced fertility rates, damage to 
topsoil, and increased sedimentation in water 
basins are all consequences of soil erosion, 
disrupting the natural balance of soil composition 
and structure. The study area is particularly 
susceptible to soil erosion, mainly due to the 
prevalence of lithological formations and soil units 
prone to erosion. The instability of weathering 
rocks stems from a combination of external and 
internal factors. Key external influences include 
climatic variables and human activities, while 
internal factors involve geological composition, 
soil properties, and regional topography. Climatic 
variables encompass temperature and 
precipitation patterns, while human-induced 
factors encompass land use and land cover 
changes, road construction, dam building, and 
mining activities. Geological factors relate to the 
lithological makeup and presence of faults, while 

soil characteristics involve textural mapping. 
Topographic factors include elevation, slope, 
aspect, curvature, and lineament features. The 
current study area has been extensively studied by 
numerous researchers focusing on mineral 
exploration, hydrocarbon development, and 
groundwater exploration, utilizing a variety of 
techniques ranging from basic to advance. 
However, there remains a notable gap in research 
concerning soil erosion and its underlying factors 
within the Kohat region. Therefore, this present 
research aims to address this gap by investigating 
soil erosion in the Kohat region and examining its 
associated parameters. The study will employ GIS 
based Frequency Ratio Modeling (FRM) to map 
soil erosion, providing a comprehensive 
understanding of the phenomenon in the area. By 
filling this research gap, this study will serve as a 
foundational platform for future research 
endeavors pertaining to soil erosion in the region. 
 
1.3.1 Study Area 
The present study focuses on the Kohat region of 
Kohat Pakhtunkhwa, Pakistan as shown in Figure 
1. The study area exhibits a limited steppe climate, 
characterized by minimal annual rainfall. Winters 
are brief, cold, and generally dry, while summers 
are long, wet, and sunny, with clear skies 
prevailing throughout the year. Extreme 
temperatures below -0.5°C and above 43.33°C are 
exceedingly rare, with typical temperatures ranging 
from 2.2°C to 39.45°C (Azra et al., 2019). The 
Kohat plateau primarily consists of Miocene-
Pliocene-aged clastic sedimentary rocks and 
Eocene-aged limestone, shale, evaporates, and 
subordinate clays (Hussain et al., 2021). The 
plateau's geological age is characterized by 
Paleocene to Pliocene sedimentary strata, initially 
deposited on the northern Indian plate edge. 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7022


Policy Research Journal  
ISSN (E): 3006-7030 ISSN (P) : 3006-7022  Volume 4, Issue 2, 2026 
 

https://policyrj.com      | Ahmad et al., 2026 | Page 199 

 
Figure 1.2 Study area map of District Kohat 

 
1.3 Objectives of the study 
The objectives of the present research are 
mentioned below; 

• To identify the soil erosion hotspot areas 
in the District Kohat using RS/GIS 
techniques. 

• To find out the causative factors of soil 
erosion in the study area. 

• To generate a comprehensive final 
erosion susceptibility map to design and 
develop a mitigation strategy. 

 
Literature Review 
Researchers have developed Soil Erosion 
Susceptibility Mapping (SESM) using diverse 
methodologies and models (Igwe et al., 2020). 
Early soil mapping depended on field-based 
analyses, which are costly, labor-intensive, and 
often limited by inadequate sampling, thereby 
affecting spatial accuracy (Prasannakumar et al.,  

 
2011). Advances in mathematical and geospatial 
techniques now enable identification of erosion-
prone areas through multiple models. Previous 
studies have proposed empirical equations for 
estimating runoff intensity and soil loss, generally 
involving data collection, model development, 
and evaluation stages (Kashiwar et al., 2022; Gong 
et al., 2022). Consideration of scale, erosion 
characteristics, and sectoral needs is essential 
(Senanayake et al., 2020). Prior to SESM 
development, qualitative approaches such as 
Weighted Overlay Analysis (WOA) and the 
Analytical Hierarchy Process (AHP) were widely 
applied to identify high-risk zones (Saha et al., 
2019). WOA integrates factors like rainfall, 
terrain, and soil erodibility (Jabbar et al., 2019), 
while AHP—introduced by Saaty (1980)—is a 
structured multi-criteria decision-making method 
(Aslam et al., 2021). It verifies weight consistency 
through the consistency ratio (CR), where values 
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<0.1 indicate acceptable weighting. Other 
commonly used models include USLE, RUSLE, 
and MUSLE (Ganasri and Ramesh, 2016). 
RUSLE incorporates rainfall, topography, soil 
properties, and land use/cover, but is limited to 
sheet and rill erosion, excluding gully erosion 
(Thapa, 2020). Despite algorithmic uncertainties, 
their GIS compatibility ensures continued 
application (Tang et al., 2015). With GIS 
advancements, quantitative approaches using 
erosion inventory data as dependent variables and 
thematic layers as predictors have gained 
importance (Senanayake et al., 2020). Among 
bivariate models, the Frequency Ratio technique 
is extensively used to analyze erosion susceptibility 
and land-use relationships (Meena et al., 2023). 
Over the past decade, satellite remote sensing has 
become increasingly significant for erosion 
mapping due to improved data availability and 
resolution. Multispectral imagery, particularly 
Landsat, remains widely used despite limited high-
spectral datasets (Sepuru and Dube, 2018). 
District-level Soil Erosion Risk (SER) mapping in 
Telangana identified priority conservation zones, 
revealing ~69% low-risk area, while districts such 
as Adilabad, Warangal, Khammam, and 
Karimnagar showed highest vulnerability (Biswas 
et al., 2015). Similarly, GIS-RUSLE applications 
in the Brazilian Amazon generated erosion risk 
maps using soil (K), topographic (LS), and canopy 
(C) factors derived from DEM and Landsat data, 
confirming lower erosion risk in forests compared 
to grazing lands (Lu et al., 2004). In India’s Khajuri 
watershed, RUSLE-based GIS modeling estimated 
annual soil loss using R, K, LS, C, and P factors 
(Agarwal et al., 2016). Mountainous regions of 
Asia also face severe land degradation; RS-GIS 
integrated USLE modeling in northern Thailand 
mapped high vulnerability in shifting cultivation 
zones (Krishna, 2009). The Weight of Evidence 
(WOE) method has emerged as a statistical 
approach for spatial erosion prediction by 
integrating geomorphological, hydrological, 
climatic, and lithological factors (Hembram et al., 
2019; Sharma et al., 2019). Evidential belief 
functions as a spatial probabilistic model of 
erosion processes (Chakraborty et al., 2020). 
Recently, qualitative and statistical methods have 

increasingly been complemented or replaced by 
machine learning techniques, which utilize 
historical datasets to predict erosion susceptibility 
(Arabameri et al., 2022; Chen et al., 2017; T Vu 
Dinh et al., 2021; Gayen et al., 2020; Rahmati et 
al., 2017). 
 
Datasets and Methodology 
The methodology of this study involves several key 
steps and is presented in a flowchart diagram as 
depicted in Figure 3.1. To achieve the objectives 
outlined in the study, the specific datasets were 
utilized. This dataset was comprised both ground 
remote sensing (RS) data, which is employed to 
generate a soil erosion map. The ground data is 
sourced from diverse national public and private 
research sectors. Satellite data is also playing a 
crucial role in this study, providing various 
parameters. Specifically, Sentinel-2, Advanced 
Land Observing Satellite (ALOS) DEM, and 
CHIRPS data were utilized. The ALOS DEM, 
with a resolution of 12.5, is openly accessible 
through The Alaska Satellite Facility (ASF). 
CHIRPS data contribute to generating the rainfall 
map, while Sentinel-2 data is aid in land use land 
cover classification of the study area. 
Initially, inventory data were collated from both 
Google Earth imagery and field surveys. The 
creation of a precise and reliable inventory map 
detailing soil erosion is deemed essential as the 
primary step towards developing a SESM for the 
study area (Aslam et al., 2021). Both field 
investigations and Google Earth imagery were 
utilized to ensure the accuracy of the inventory 
map. Subsequently, two distinct datasets were 
generated from the inventory data: one designated 
for training purposes (80%) and the other for 
testing (20%). The predisposing parameters, 
including altitude, slope angle, aspect, curvature, 
lithology, land use land cover, road, rainfall data, 
and stream network, was derived from a 
combination of ground and satellite data utilizing 
GIS technology. Elevation, Slope, Aspect, 
curvature, drainage was calculated from dem data 
using specified spatial analysis tools. Sentinel-02 
image was classified using supervised classification 
and the area was calculated at the end. The soil 
and lithology data was digitized from the 
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geological map of Pakistan. All the created 
variables were reclassified high weightage were 
given to the high influence in soil erosion factor 
and low weightage was given to the low 
influencing factor. The testing data and the 
training data were then compared in the excel 
sheet for getting the validation of the result by 

using overall accuracy formula. Subsequently, the 
interrelationship between causative factors and 
soil erosion inventory will be analyzed 
computationally. Finally, the SESM of the Kohat 
region is generated using the FR model and was 
validated using the AUCROC method. 

 
Figure 3.1 Comprehensive flowchart of the study 

 
3.1 Frequency Ration Model (FRM) 
The FR approach is one of the GIS-based 
algorithms that has received the most attention for 
assessing the spatial relationship between the two 
variables (Khosrokhani and Pradhan, 2014). This 
approach is a reliable tested technique for 
generating soil erosion map for the study region. 
  

 
This technique is a GIS based statistical approach 
that uses spatial data SESM (Bonham-Carter et al., 
1990; Chen et al., 2018; Senanayake et al., 2020). 
The following Equation 1 was used for frequency 
ratio of soil erosion Susceptibility (Chen et al., 
2018). 

 FR =
NiSx M⁄

Nil𝑠 Ml⁄
                         (1)                                         

 
Where FR = Frequency Ratio, NiSx = number of 
pixels in each causative parameter category. M = 
total number of pixels, Nils= soil erosion pixels 
number in parameter, Ml = total soil erosion 

pixels.  
Then the following equation 2 were applied for 
SESP of FR. 
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SE = ∑ FRij

n

i=1

                           (2)                                           

 
The above term FRij is the FR value for class ‘j’ of parameter ‘i’, n is the whole number of parameters. 
 
Results and Discussion 
4.1 Susceptibility maps  
4.1.1 Elevation 
Kohat's elevation has been taken out of the ALO 
and added to the DEM's corrected coordinate 
system to determine the area's elevation in meters, 

as seen in figure 4.1. The District Kohat's overall 
elevation ranges from 209 meters to 2061 meters. 
In east pf the study area the elevation is from 209 
followed by the center of the study area and high 
elevation is in the west side of the Kohat District. 

 

         
Figure 4.1 Map showing the elevation status   Figure 4.2 Map showing the Slope status 
 
4.1.2 Slope 
Using a slope analysis tool, the slope was extracted 
from the DEM. A key factor in soil erosion in the 
area is slope. Figure 4.2's result amply illustrates 
that the majority of the southern portion of the  

 
district has temperatures below 10 degrees. 
According to recent study, soil erosion occurs 
more frequently in temperatures between 10 and 
20 and 30 degrees. 30 – 40 degree and above 40 
degree was not to influencing in the soil erosion.

 
4.1.3 Aspect 
Aspect variable is major effect on 
evapotranspiration and moisture content which 
lead to soil erosion the 09 figures that was carried 
out through Aspect Spatial analysis is given as  
 

under in figure 4.3. North side has 0-22.5, NE 
have 22.5-67.5, east 68.5-112.5, south 157.5-
202.5. Most of the soil erosion factor in kohat is 
lies South area of the aspect most favorable to the 
soil erosion. 
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Figure 4.3 Map showing the Aspect Status    Figure 4.4 Map showing the Curvature status  
 
4.1.4 Curvature 
Useful information against geomorphology of the 
study area is through another spatial analysis of 
DEM data by Curvature tool, which Change the 
data of DEM to Concave, Flat and Convex 

Curvature. As shown in figure 4.4 the negative 
value in the study area from -14 to 0 was consider 
as concave, the 0 value which has no elevation are 
flat surface of the study area and the positive value 
from 1 to 18 is consider as convex. 

 
4.1.5 Drainage 
4.1.5.1 Hydrological Tools  

  
 

    Figure 4.6 Map showing the Drainage status 
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4.1.5.2 Fill   
The filling tool was pushed across the grid's surface 
to fill each well (DEM). Since they accounted for 
0.9 to 4.7% of the total cell, these were depressions 
in a digital elevation model. Consequently, for 
these wells, the DEM backfill technique was 
employed. This tool creates the output area after 
the wells are filled, and it is received as a 
continuous grid area.  
 
4. 1.5.3 Flow Direction  
This tool allows you to determine the direction 
each grid cell flows in. In order to depict the 
direction of flow from each compartment toward 
its neighbor's steepest slope, the input and output 
grids are used by the tool to create a grid region 
(fill). "Force all cells to exit" is then chosen. Every 
cell in close proximity to the surface recedes from 
the grid's center.  
 
4. 1.5.4 Flow Accumulation   
Using this technique, the cumulative stream is 
calculated. A direction of flow grid is employed 
because the resultant grids display the cumulative 
run towards every cell. Each cell has the default 
weight of 1, as the input weight grid is optional. 
The data type of the output is integers. Once flows 
are accumulated to capture bigger flows, we split 
the gathered flow into two compartments.  
 
4. 1.5.5 Conditional   
When flow accumulation is set to true, the input 
true grid is utilized as the output cell value and the 
technique is functional to the grid surface in the 
way of flow. The database and the conditions 
output grid are lined up.  

 
4. 1.5.6 Focal Statistic  
The focal statistics are computed by running the 
Focus Statistics program on the conditional grid. 
The conditional grid is seen in clear detail on the 
output centroid statistics grid. By default, the 
statistics type (optional), the district, and its 
settings are kept.  
 
4. 1.5.7 Stream Order  
In order to do this, workers in the flow system 
must be given a digital imperative. This technique 
aids in finding and categorizing generated flows 
according to the quantity of branches. The Flow 
Direction tool creates an input raster, and the 
Flow Order tool takes that raster and uses it to 
specify the flow direction of that raster. The flow 
direction is then used to determine the output 
raster. Flow networks that share the same flow 
order are categorized using the Spotlight 
technique. A primary and subsequent imperative 
connection do not form a third-directive 
connection; rather, they stay second-order 
connections.  
 
4. 1.5.8 Stream to Feature  
When vectorizing overlapping and neighboring 
cells, the Flow to Element tool is designed to make 
the best use of a directed grid. A linear flow 
network is represented by the flow grid surface 
that this tool uses as inputs. The flow direction 
tool is used to construct the flow direction raster, 
which contains the converted flow in the flow base 
and is indicated as a shape file for the resultant 
polylines. The primary rivers in this study region 
are identified in response to this request.  

 
4.2 Euclidean Distance  
The typical band area on a flat surface between 
binary subjects or lines is called the Euclidean 
distance. Each cell's distance from a source or 
group of sources is expressed in terms of Euclidean 
distance. To illustrate the figure's distance from 
the rest of the field, a visually appealing grid is 
created using a vector layer or another grid. 
Displays the available space at a given distance, 
another distance, etc. We've predefined the grid or 
there's a maximum distance specified. Each 

section can be respectfully detached from its 
neighboring base thanks to the Euclidean distance 
manufacturing grid. In the grid projection unit, 
substitutions are identified and computed from 
one subject focus to the next.  
  
4.3 Rainfall 
Rainfall also is an important aspect to soil erosion. 
The data was prepared from CHIRPS data. The 
data was downloaded on yearly basis and in arc 
map we get the average rainfall data through raster 
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calculator. 

 
Figure 4.6 Map showing the Rainfall status    Figure 4.7 Map showing the LULC status 
 
4.4 Image analysis Process  
4.4 Image Classification   
Land use land cover determined using Sentinel-02 
images and then the classified result was validated 
with google earth using different Arc map tools.  
 
4.4.1 Extraction   
Using the Extract to mask tool, which extracts a 
grid cell that corresponds to the area, the 
extraction was completed. In order to extract the 
study area shape file, the grid from which the cell 
was retrieved is utilized as input. The form is 
allotted no data cells if the feature data is in raster 
format. Using sentinel-02 image, we utilized this 
application to extract our study region. 
 
4.4.2 Supervised Classification  
Afterwards, supervised classification by sampling is 
used to separate the Sentinel-2-extracted research 
area into several classes. The illustration 
originated from the menu bar's training example.  

These training examples are then stored for use in 
noisy data categorization. To "create" a signature 
for these training examples, let's proceed. The 
route for classification is given by this signature. 
This tool accepts raster images as input, and it uses 
the image-created training example to input data 
into the feature example dataset. The location of 
the signature file output is chosen.  
 
4.4.3 Maximum Likelihood Classification  
Raster categorized layers are produced when 
ordinary raster strips are subjected to maximum 
likelihood classification. Both an input raster 
picture and an input signature file made with the 
Signature File tool are provided. In the output, 
select the categorized raster layer. Due to a portion 
of the cell not being classified during classification, 
the reject rate is kept by default in the tool. All of 
the raster layer's cells will be classified, 
nevertheless, if it is 0.0. All classes received the 
same priority because the prior probability option 
was selected equally.

4.5 lithology 
The composition of lithology of the Kohat area 
was digitize from Pakistan Geological Survey data. 
The image was first rectified and the after that class 

wise data was digitized from the image. It consists 
of different formation like alluvium, 
metaphorphic, sedimentary etc. as shown in figure 
4.7. 
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Figure 4.8 Map showing the Lithology status    Figure 4.9 Map showing the Soil texture status  
 
4.6 Soil Texture 
Soil texture was digitized from the geological 
survey of Pakistan. Texture of the soil is essential 
aspect to soil erosion, it also impacts the structure 

of the soil, like mountainous land, non-calcareous, 
calcareous, moderately calcareous, Loam and 
calcareous. 

 
4.7 Reclassifying Data Sets  
All raster datasets were produced with different 
techniques. In order to create a prepared 
suitability map that would identify irrigated 
regions in the District Kohat, the derived grid 
surface layer was kept together. Now, each grid 
region has a new ranking and weight based on its 
relative relevance. The high percentage rate was for 
high erodibility area and the low percentage of the 
area was given as low erodibility area. The 

reclassification was done for all the layers to 
prepare the results for the weighted overlay.  
 
4.8 Reclassify Elevation  
The Elevation that was taken from ALOS was 
reclassified according to their importance. High 
value was given to the high eroded risk areas and 
low value was given to the low influence area. As 
shown in table 4.1. 

 
Table 4.1: Table Showing Criteria for Elevation 

 
Class Range  

 
Weight  

 
Description  

< 400  5  High  
400 - 600  3  Moderate 
600 - 800  2  Low 
>1000  1  Least 
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Figure 4.10 Map showing the Reclassify Elevation status          Figure 4.11Map showing the Reclassify Aspect status  

 
4.9 Reclassify Aspect 
The Aspect is reclassified, divided the value on the 
basis of SW was given high ranked and the  

 
remaining was followed by 4 and 2. Value of 5 is 
assigned to high and the value of 1 to the Low 
Ranked value area given below: 

4.10 Reclassify Curvature  
The output of the Curvature is reclassified, 
divided the value into Convex, flat and concave. 
The high Value of 5 is assigned to convex low 
value was assigned to the flat surface where there 

is no soil erosion can occurred and medium 
weights were given to concave high influence and 
the value of 1 to the low influence. As shown in 
table 4.2. 
 

 
Table 4.2: Table Showing Criteria for Curvature 
 
Class Range  

 
Weight  

 
Description  

Concave  2 High  
Flat  1   Moderately  
Convex  5  Less  

4.11 Reclassify Slope 
Output of the slope were reclassified into 5 
categories. Value 5 were assigned to high influence 

area and 1 to less influence area. The ranked value 
is given below:  

 
Table 4.3: Table showing criteria for classified slope 
Class range (feet)  Weight  Description  
<10 3 Moderate 
10-20  5  High 
20-30  4  Moderately  
30-40  2  Low 
>40  1 Least 
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Figure 4.12 Map showing the Reclassify Curvature status   Figure 4.13 Map showing the Reclassify Slope status  
 
4.12 Reclassify Rivers 
The result of Euclidean distance was reclassified 5 
value is given as high influence, 4 and 3 moderate 

and 1 value is given to far away the area of river 
above 350m which is less influence.  

 
Table 4.4: Table showing criteria for reclassified river 
  
Class Range  

  
Weight  

  
Description  

<40 5  High  
40-150 4   Moderately  
150-250 3  Medium 
250-350 2  Low   
>350 1  Least 
 

 
4.13 Reclassify Road 
The resultant reclassifying the road's Euclidean 
distance, the value is divided into equal intervals. 

A 5 represents a high value, whereas a 1 represents 
a low value. Value area with rankings is shown 
below. 

 
Table 4.5: Table Showing Criteria for Road 

 
Class Range  

 
Weight  

 
Description  

<25 4 High  
25-50 3  Moderately  
50-150 2 Medium 
150-250 2  Low   
>250 1  Least 
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   Figure 4.14 Map showing the Reclassify Drainage status Figure 4.15 Map showing the Reclassify Roads status  
 
 
4.14 Reclassify Soil Texture  
Soil layer is first converted to raster before being 
reclassified. Mountainous, Moderately  
Calcareous, loam and clay. Loam and clay soils 
are highly valued, whereas mountainous are 
given a low rating. The value is ranked below:
 
 
 
 
 
 
 
 

Figure 4.16 Map showing the Reclassify Soil texture status  
 
Table 4.6: Table Showing Criteria for Classified Soil texture 
 
Soil texture   

 
Weight  

 
Description  

Loam & Clay ( Calcareous)  5  High  
Mountainous  4  Moderately  
Moderately Calcareous  3  Less  

 
 

4.15 Reclassify LULC 
LULC was reclassified according to the classes as 
the other classes were mainly hitting the north area 

and center of the area for soil erosion however we 
can also take the satellite data and giving high 
value that have strong capability to erode the land. 
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Figure 4.17 Map showing the Reclassify LULC status  

 
 4.16 Multi Influencing Factor  
A final weighted overlay procedure combines all 
reclassified layers to create a single-layer map from 
each of the several parameter layers. The multi-
influencer technique was used to weight each 
input grid according to its significance or degree 
of influence. This method is predicated on the 
primary and secondary impacts. The primary 
impact factors identified in our investigation were 

rivers and dams. While soil structure, slope and 
land use/cover received a smaller factor. Both the 
main impact (A) and the secondary effect (B) 
cumulative weights are used for determining 
relative rates. Each influencing factor's score is 
then determined using this rate. The formula is 
used to determine each influencing factor's 
suggested score.  
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Figure 4.18 Maps showing the different susceptibility status  

 

 
Figure 4.19 Graph showing the Percentage of the Susceptibility of District Kohat 
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Figure 4.20 Map showing the Susceptibility status of District Kohat 

 
The rate of land loss is higher than the rate of land 
development worldwide by a ratio of 10 to 40, 
endangering the environment and food security 
(the average annual rate of soil loss in Asia is 29.95 
t/ha/year). This underscores the seriousness of the 
problem. Approximately 80% of the sediment 
discharged into the world's oceans is a result of soil 
conservation initiatives (Price et al., 2014; Naqvi 
et al., 2013). Degradation percentage of 
agricultural land worldwide (Puente et al., 2019) 
The effects are extensive and include decreased 
agricultural yield, changed water quality, a higher 
risk of landslides in steep terrain, sediment 
deposition in catchment water systems, which 
raises the possibility of flooding, and a decrease in 
the amount of energy produced from hydroelectric 
power (Alexander et al., 2012). Measurement of 
soil erosion, spatial mapping of its distribution, 
and vulnerability analysis-based area at risk 

identification are among the sustainable 
management techniques needed to address these 
difficulties (Koirala et al., 2019). For efficient 
mitigation and management, this research 
methodology for mapping soil erosion 
susceptibility is crucial. This project's goal is to 
create a reliable and precise soil erosion 
vulnerability mapping system that can locate and 
forecast locations within a given geographic area 
that are prone to erosion. This system will generate 
comprehensive vulnerability maps by utilizing 
machine learning algorithms, remote sensing 
techniques, and sophisticated geospatial data. 
MIF, which absorbed numerous conditions, was 
used to do this. Elevation, aspect, curvature, slope, 
drainage, roads, LULC, lithology, soil texture, and 
precipitation by superimposing weighted layers. 
The erratic places that contributed appropriately 
to soil erosion were given a lot of attention. 
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Rainfall is extremely susceptible to soil erosion, 
along with elevation, aspect, curvature, slope, and 
drainage. You can rapidly locate and contrast hot 
regions thanks to the suitability map that presents 
the data in (Figure 4.18). In summary, Kohat has 
a relatively high erosion rate (4% overall), with 
high, medium, and low sensitivity levels following 
shown in figure 4.19 and 20. This is especially 
evident along the river. Sustainable land 
management techniques, conservation programs, 
and land use planning will all be based on these 
maps. The produced maps enable erosion 
prevention and control strategies to be prioritized 
by giving decision makers access to relevant 
information. In the end, this project's vulnerability 
map will be a useful tool for sustainable 
development, land management, and 
conservation initiatives. This will provide 
stakeholders with the information they need to 
decide how best to promote sustainable land use 
practices and reduce soil erosion.  
 
Conclusion 
5.1 Conclusion 
The outcome yielded a map that classified the 
Kohat district's irrigated land suitability into four 
categories: low, medium, high, and extremely 
high. The results of the study will be useful in the 
formulation of plans and policies by the Pakistani 
government and other non-governmental 
organizations to address soil erosion in the Kohat 
district.  
A susceptibility map of eroded sites was created in 
this study using a GIS based multi-criteria analysis. 
Several technologies for spatial analysis were used 
to support this. Five layers were used to apply the 
tool: LULC, Path, Drainage, Aspect, Curvature, 
Slope, and Precipitation.  
The outcomes of this investigation demonstrate 
how the geographic information system may be 
employed as a tool to methodically examine water 
resources, resulting in a more accurate and serene 
analysis. The adoption of an unparalleled 
worldwide approach may be one of the study's 
main takeaways for investors, management, and 
other stakeholders. 
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