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Abstract 
Machine learning-based Intrusion Detection Systems (IDS) have become essential 
com- ponents of modern cybersecurity infrastructure yet remain vulnerable to 
adversarial attacks that can compromise their effectiveness. This research presents a 
comprehensive compara- tive analysis of two state-of-the-art adversarial generation 
frameworks: Anti-Intrusion De- tection Autoencoder (AIDAE) and Self-Attention 
Generative Adversarial Network for IDS (SGAN-IDS). Traditional IDS 
approaches, including signature-based and anomaly-based methods, suffer from 
significant limitations such as inability to detect zero-day attacks and high false 
alarm rates. While machine learning-based IDS have addressed some of these 
shortcomings, they remain susceptible to carefully crafted adversarial examples 
that can evade detection. This study establishes a uniform experimental 
framework to systemati- cally evaluate and compare the adversarial effectiveness of 
AIDAE and SGAN-IDS under identical conditions. Both methods are tested 
against a Random Forest classifier using the NSL-KDD dataset, enabling direct 
comparison of their adversarial generation capabilities, training dynamics, and 
attack strategies. AIDAE combines autoencoder reconstruction with GAN-based 
adversarial training to generate semantically consistent adversarial sam- ples, 
while SGAN-IDS leverages self-attention mechanisms to capture long-range depen- 
dencies and produce globally consistent adversarial traffic. Through quantitative 
evaluation metrics including accuracy degradation, fooling rate, and confusion 
matrix analysis, this research provides critical insights into the strengths, 
weaknesses, and trade-offs of each approach. The findings reveal fundamental 
vulnerabilities in machine learning-based IDS and highlight the urgent need for 
adversarial-robust architectures. This study establishes important benchmarks for 
adversarial traffic generation and contributes to the development of more resilient 
intrusion detection systems capable of defending against sophisticated at- tacks. 
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1 Introduction 
In today’s growing world, digital platforms are the source of connectivity between people, businesses, 
government, and all kinds of institutions, where we can instantly share information across the world. These 
platforms have greatly promoted communication, but it has made our digital data, infrastructure, and personal 
information more vulnerable. We can say that not only individuals, but the entire nation is constantly at risk 
of cyber-attacks, data leakage, and disruptions on different scales [24, 25]. 
To avoid such situations, IDS (Intrusion Detection System) has become an important part of cybersecurity. 
Intrusion Detection System plays an important role in identifying all the ma- licious traffic. It plays an 
important role in protecting information and systems against such threats [34]. They are generally divided into 
two types: Signature-based IDS and Anomaly- based IDS. Signature-based IDS detects attacks by analyzing the 
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activity of the system or net- work and comparing it with the known signatures of previous attacks in the data 
[25]. 
They are good at detecting known attacks with non-significant errors and do not produce much false alarms, 
but they are not very effective in detecting unknown or zero-day attacks. That is why they must be continuously 
updated with new signatures. 
To remove this weakness, researchers developed Anomaly-based IDS. This IDS first ob- serves the basic activities 
of the network or system as a baseline, but then any activity deviating from this baseline is flagged as anomaly. 
They cover the weaknesses of signature-based IDS, but while they are effective in detecting unknown and zero-
day attacks, this strength brings a new problem. These unusual activities are not necessarily malicious. That is why 
they also label benign but unusual activities as malicious, which produces large numbers of false alarms [25]. 
Since both traditional IDS have significant weaknesses, therefore, after discovering the shortcomings of 
previous works, researchers use Machine learning-based IDS to analyze or estimate network traffic and system 
activities [21, 24]. They learn from data how to distinguish between normal and malicious or abnormal behavior, 
and they reduce some shortcomings of signature-based and anomaly-based IDS, such as reducing false alarm 
rate and detecting un- 
known attacks. 
In practice, different machine learning models have been used for intrusion detection like Support Vector 
Machine (SVM) [19] for classification, Random Forest (RF) [18] for large and complex datasets, K-Nearest 
Neighbor (KNN) [20] for pattern recognition, Convolutional Neural Network (CNN) and Deep Learning [21, 
22] for capturing non-linear relationships in traffic. These models have proven to be very important and 
effective in detecting both known and new and advanced types of attacks [23]. 
However, despite better detection performance, machine learning-based IDS are not com- pletely foolproof and 
still have vulnerabilities to adversarial attacks [15, 16, 33]. In an Adver- sarial attack, a malicious actor 
deliberately creates such network traffic that is called adversarial traffic or adversarial examples to deceive 
machine learning models. They do this by slightly altering the patterns of traffic signals or network packets so 
that the machine learning model misclassifies, such as labeling malicious packets as benign [15]. Therefore, 
since machine learning-based IDS rely entirely on learned patterns, their functioning is based on these pat- 
terns, which makes them sensitive to such attacks. 
To further understand these weaknesses and improve performance, researchers have used different machine 
learning models to prepare adversarial samples, and malicious samples are made by bringing perturbation in 
traffic, such as changing the content of packets, timestamps, or length of packets unusually, or perturbations are 
calculated to exploit the weaknesses of IDS models so that misclassification can happen [16, 17]. Machine 
learning-based IDS help in identifying these weaknesses. 
Researchers have used a powerful method, the method which we call Generative adversarial network (GAN) [7]. 
This is an effective way to create sophisticated adversarial samples for testing IDS models. Instead of relying on 
simple rule-based perturbations, they use data-driven learning to make flexible and effective adversarial samples 
[10, 11]. These prove valuable for testing IDS against advanced threats and for making them more robust 
through further adversarial training. 
However, GAN also has notable weaknesses in IDS. They often suffer from training insta- bility. They face 
difficulty in capturing long-term dependencies in network traffic and some- times prepare such samples that look 
statistical but do not have semantic consistency with those attacks in the real world [26]. 
To overcome these shortcomings, researchers have introduced improved frameworks such as Anti Intrusion 
Detection Autoencoder (AIDAE) [2] and Self-Attention GAN, which is called SGAN-IDS [1]. AIDAE [2] 
combines the generative abilities of GAN with the reconstruction power of Autoencoder. This can capture 
both continuous and discrete traffic features, which makes samples not only statistically realistic but also 
semantically consistent. SGAN-IDS [1] uses the self-attention mechanism [6, 8], which lets models focus on 
global dependencies instead of long patterns. This captures long-range relations and produces more 
sophisticated and diverse adversarial traffic that better simulates complex attack behaviors. 
These both advancements have made adversarial generation more realistic and difficult, which makes machine 
learning-based IDS stronger. Beyond GAN-based frameworks, several other techniques have also been used in 
adversarial traffic generation, such as Particle Swarm, Genetic Algorithm (GA), Adaptive Adversarial Packet 
Manipulation (A2PM), Optimization (PSO), and Monte Carlo (MC) approaches [11,13]. Although these 
techniques perturb network traffic in different ways, their objective is the same: to produce adversarial 
examples so that IDS performance can be tested and evaluated better. 
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This research establishes a uniform framework to evaluate the effectiveness of AIDAE [2] and SGAN-IDS [1] in 
a controlled environment. By testing their adversarial generative abili- ties against Random Forest [18] 
classification on the NSL-KDD dataset [3], this work provides important insights into the trade-off of these 
advanced methods and sets a new important bench- mark for preparing realistic machine learning-based IDS. 
The primary objective of this research is not to promote cyber-attacks but to reveal the weaknesses of machine 
learning-based IDS [34], and our main aim is to highlight these vulner- abilities so that in the future they can be 
secured and strengthened. 
 
The main contributions of this research are summarized as follows: 
• We propose a uniform evaluation framework that brings AIDAE [2] and SGAN-IDS [1] together under 
the same experimental setup and specifically both methods are tested on the NSL-KDD dataset [3] with 
Random Forest classifier [18] under identical conditions. 
• We conduct comparative analysis of adversarial sample generation, which highlights the strengths and 
weaknesses of AIDAE [2] and SGAN-IDS [1]. This explains what aspects make each method more powerful or 
weaker. 
• We provide quantitative evaluation metrics to systematically assess adversarial effective- ness and to test 
trade-off. This helps us understand how and where these models work in real-world intrusion detection 
scenarios. 
 
2 Literature Review 
The concept of Intrusion Detection Systems first started from anomaly-based security models, which Denning 
introduced, and later Anderson improved them. The biggest problem of these early models was that they 
produced too many false alarms. A major update in IDS research came when Tavallaee et al. published their 
study ”A Detailed Analysis of the KDD CUP 99 Dataset” [3]. From which the NSL-KDD dataset was 
developed. This dataset became a standard, but the IDS models of that time depended on simple statistical 
features, because of which attackers could easily evade them. When machine learning was introduced into IDS 
design, models such as SVM by Cortes and Vapnik [19], KNN by Cover and Hart [20], Random Forest by Breiman 
[18], and deep learning models such as LSTM networks by Hochreiter and Schmidhuber [22] improved the 
detection performance significantly. 
But large surveys such as Mishra et al.’s ML for IDS [25] and Coulter et al. Intelligent Traffic Analysis [24] show 
that machine-learning-based IDSs are very sensitive to adversar- ial manipulation. This vulnerability was first 
formally exposed by Biggio et al.; their paper ”Evasion Attacks Against Machine Learning at Test Time” [15] 
proved that classifiers can be fooled by even a small adversarial noise. Around the same time Goodfellow et al. 
Introduced GAN [7], which provided new methods for generating realistic synthetic data and opened the way 
for creating adversarial samples in IDS research. 
GAN-based IDS attack research was first done by Hu and Tan in their paper ”Generating Adversarial Malware 
Using GAN” [12], where malware behavior was changed to evade IDS. After that Usama et al. proposed GAN 
for Launching and Thwarting Adversarial Attacks on IDS [11], which generated adversarial network traffic. 
This work was pioneering, but these approaches had one major limitation: continuous and discrete features were 
treated in the same way, because of which the generated samples sometimes became unrealistic. 
After this, Lin et al. introduced IDSGAN [10], where the generator learns from the pre- dicted labels of a black-
box IDS and generates adversarial traffic near the decision boundary. But the issue with IDSGAN was that it 
queried the IDS too much, discrete features would get distorted, and the semantic structure was not preserved. 
To solve these problems, Chen, Wu, Zhao, Sharma, Blumenstein, and Yu proposed AIDAE in 2020 in their 
paper ”Fooling Intrusion Detection Systems Using Adversarial Autoencoder” [2]. AIDAE combines an encoder, 
separate continuous and discrete decoders, and a GAN. The encoder maps raw traffic into latent space. The 
continuous and discrete decoders reconstruct features in a realistic form, and for discrete reconstruction AIDAE 
uses Gumbel-Softmax. The GAN keeps the latent space natural so that synthetic latent codes appear realistic. A 
major advantage of AIDAE is that it generates adversarial traffic without using IDS feedback. AIDAE noticeably 
degraded attack detection on NSL-KDD, UNSW-NB15 [4], and CICIDS2017 [5]. 
Another revolution in deep learning occurred when Vaswani et al. introduced the self- attention mechanism in 
”Attention Is All You Need” [8]. Self-attention made it easy to capture long-range dependencies, which is very 
useful for complex network-traffic data. Using this concept, Aldhaheri and Alhuzali [1] proposed SGAN-IDS. 
SGAN-IDS uses self-attention in- side the generator so it can understand distant feature relationships and 
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generate globally con- sistent adversarial samples. SGAN-IDS greatly reduced detection accuracy of multiple 
IDS models and generated highly deceptive adversarial flows. 
Overall, the research progression is clear: adversarial sample generation for IDS began with simple GAN attacks, 
evolved into black-box guided models such as IDSGAN, moved toward semantically consistent frameworks like 
AIDAE to preserve feature realism, and finally reached an advanced level with self-attention-based SGAN-IDS. In 
our research, both state-of-the-art frameworks, AIDAE [2] and SGAN-IDS [1], are evaluated on the common 
NSL-KDD [3] dataset using a Random Forest [18] classifier, allowing a fair and direct comparison of the actual 
strengths and weaknesses of each model. 
 
3 Methodology 
This section describes the experimental design and the procedural steps used to evaluate ad- versarial traffic 
generation methods. We present the conceptual framework, data preprocessing steps, baseline classifier 
configuration, adversarial generation techniques (AIDAE and SGAN- IDS), the experimental protocol, and 
evaluation metrics. 
 
3.1 Experimental Framework 
The primary objective of this research is that two state-of-the-art adversarial sample genera- tion framework 
AIDAE and SGAN, be systematically compared under the same experimental conditions and their effect on 
Random Forest based IDS detection performance be quantified. And evaluates the regression in detection 
performance when the baseline ideas encounter these adversarial samples. This comprehensive evaluation 
framework enables direct comparison of adversarial effectiveness while maintaining controlled experimental 
conditions throughout the study. 
 

 
Figure 1: Adversarial sample generation framework AIDAE and SGAN 

 
1.1 Intrusion Detection System 
1.1.1 Random Forest 
For IDS, we choose random forest algorithm [18] because it is fast and reliable in classification. The model is an 
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ensemble of decision trees, and its final prediction is based on a majority vote of the individual trees. Random 
forest is configured with some specific hyperparameters so that the result is reproducible, and the performance 
is optimal. 
Formally, a Random Forest is an ensemble of T decision trees {ht(x; Θt)}T where Θt are 
independent and identically distributed random vectors. The final prediction for a given input 
x ∈ Rd is: 
 
 yˆ = majority vote{ht(x; Θt)}T                          (1) 
 
 
 
  
For regression tasks, the prediction is the average: 
yˆ =  1 Σ h (x; Θ ) (2) 
 
For training, 80 percent of training data is used for training, and 20 percent data is set for validation. We test 
the model on testing data to evaluate whether the model works correctly on new and unseen data. 

 
 

Table 1: Random Forest Hyperparameter Configuration 

 
Hyperparameter Value Justification 

 
Balances performance 
Number of Estimators (n estimators) 100 
Max Depth None 

and computational ef- ficiency 
Allows trees to ex- pand until pure leaves are 
achieved 

2 Standard value for un- restricted tree growth 
 
1 
 
 Permits fine-grained decision boundaries 
Reduces correla- 
Max Features sqrt tion among trees: 

max features = 
n features 

True Enables bagging for variance reduction 
 
42 Ensures reproducibil- ity across experiments 

 
 

Min Samples Split 

Bootstrap 

Random State 

Min Samples Leaf 
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3.2 Adversarial Generation Techniques 
We created adversarial samples by making small and carefully planned changes in the features [15, 16]. We made 
such small changes in features so that data seems normal to both humans and ML-based IDS. 
First, adversarial samples were prepared in such a way that the record’s features were given small changes. These 
changes were made in such a manner that they do not appear much, but they are enough to deceive the system. 
The purpose of making these changes is that the system understands it in a wrong way. 
Mathematically, given a legitimate sample x Rd with true label y, we seek an adversarial sample xadv such that: 
 
xadv = x + δ, δ  p ≤ ε (3) 
 
f (xadv) ̸= y, while f (x) = y  (4) where f : Rd is the IDS 
classifier, δ is the perturbation vector,   p is the Lp-norm, 
and ε is the perturbation budget. 
 
3.2.1 AIDAE (Anti Intrusion Detection Autoencoder) 
This AIDAE [2] is a model in which the Auto-Encoder and the Generative Adversarial Network (GAN) [7] are 
combined to design a system that generates adversarial network traffic which confuses the Intrusion Detection 
System (IDS). Its main purpose is to create synthetic traffic features that look like normal data but are not 
actually real. 
AIDAE’s structure consists of two parts: The Encoder compresses the original network traffic data (both 
continuous and discrete features) into a small latent representation. The De- coder then reconstructs that 
compressed data back into its original form; however, instead of making an exact copy, the model slightly 
modifies the data so that it appears like normal traffic but behaves slightly differently during the detection phase. 
The structure of the AIDAE is pre- sented in Figure 2. AIDAE’s adversarial component comes from its GAN 
integration [7], where the generator produces random latent codes, and the discriminator checks whether these 
gener- ated feature codes come from the real distribution or from the synthetic one. This adversarial training 
helps the model learn the distribution of normal data more accurately and generates traffic that appears normal 
but is actually adversarial in nature. To guide this learning, AIDAE uses two types of loss functions [2]. 
 

Figure 2: The framework of the AIDAE (anti-intrusion detection autoencoder) 
 
Reconstruction Loss measures how accurately the autoencoder has reconstructed the input data. It ensures that 
the generated features remain close to the original distribution. Adversar- ial Loss helps the generator to create 
features that can fool the IDS, making it classify malicious traffic as normal. 
By combining both losses, AIDAE [2] produces adversarial samples that are close to real traffic but effectively 
deceive the IDS. In this project, AIDAE was applied to the NSL-KDD dataset [3] and tested on a pre-trained 
Random Forest [18] IDS model. The results showed that when the IDS was tested with AIDAE generated data, 
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Generator (G) 

tures 

tures 

→ 

∈ → 
X ⊂ → ∈ X 

→ 

its accuracy dropped, which proves that the model has the ability to mislead detection systems. 
 
3.2.2 Mathematical Formulation of AIDAE 
The training objective of the AIDAE model combines the Autoencoder reconstruction loss 
and the Adversarial loss from the GAN component. 
Let   Rd be the input space. The encoder E : Rd  Rl maps input x to a latent 
representation z = E(x) Rl, where l is the latent dimension. The decoder D : Rl  Rd reconstructs the 
input from the latent representation: x̂ = D(z) = D(E(x)). 
The generator G : Rl  Rl produces perturbations in the latent space: δ = G(z). The adversarial latent 
representation is: 
zadv = z + ε · G(z) (5) 
where ε is the perturbation budget. 
The discriminator Dis : Rl [0, 1] distinguishes between real latent codes zreal = E(x) 
and fake latent codes zfake = zadv. 
The overall objective function can be expressed as: 
min max Ec∼P(c)[log Dis(c)] + Ez∼P(z)[log(1 − Dis(G(z)))] + λLrec (6) 
G,E D 
where: 
• G: Generator 
• Dis: Discriminator 
• E: Encoder 
• Lrec: Reconstruction loss 
• P (c): Real data distribution 
• P (z): Latent distribution from encoder 
• λ: Weight coefficient balancing the losses 
 
The network structure of AIDAE is shown in Table 2, where input-dim is the dimension of the input features, z 
is representing the 64-dimensional latent vector, δ is the perturbation generated in the latent space, λ is the 
weight coefficient balancing MSE and BCE losses, and lr is the learning rate of the Adam optimizer set to 
0.001 to fool the target IDS classifier. 

 
Table 2: The network structure of the AIDAE 

  

Component Encoder (E) Decoder (D) 
Perturbation Discriminator (Dis) 

Role Converts X to 
latent z 
Architecture Linear(in → 256) 
Linear(256 → 128) 
Linear(128 → 64) 

Reconstructs X’ 
from latent z 
Linear(64 → 128) 
Linear(128 → 256) 
Linear(256 → in) 

Generates pert. 
δ in latent space 
Linear(64 → 128) 
Linear(128 → 128) 
Linear(128 → 64) 

Distinguishes real/fake z 
Linear(64 → 128) 
Linear(128 → 64) 
Linear(64 → 1) 

  

Input Size 
input dim fea- 

64-dim latent 64-dim latent 64-dim latent 

Output Size 64-dim latent 
input dim fea- 

64-dim pert. Probability [0, 1] 
  
Activation ReLU 
ReLU 
None 

ReLU 
ReLU 
Sigmoid 

ReLU 
Tanh 

LeakyReLU(0.2) Sigmoid 

  
Loss Function MSE MSE BCE +λ · MSE BCE 
Optimizer Adam (lr=0.001) Adam (lr=0.001) Adam (lr=0.005) Adam (lr=0.001) 

 
Training Data Normal only Normal only Normal only Real + Fake latent 
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Σ 

~ 

j=1 j j 

 
 
3.2.3 Training Procedure 
The AIDAE framework is trained for 50 epochs with a batch size of 128 using only normal traffic samples. The 
ADAM optimizer is used for all components, with learning rates of 0.001 for the Encoder, Decoder, and 
discriminator, and 0.005 for the Generator, while keeping the default momentum parameters β1 = 0.9 and β2 
= 0.999. The reconstruction loss weight is set to λ = 0.5, the latent dimension is 64, and the training epsilon is 
fixed at ε = 0.3. During training, three optimization steps are performed in an alternating manner. 
First, the autoencoder (Encoder-Decoder) is updated by minimizing the reconstruction loss: 
 
d 

Lrec =  x − D(E(x))  
2 = (xi − x̂ i ) 2  (7) 

i=1 
For mixed feature types (continuous and discrete), AIDAE employs separate decoders. For continuous features, 
it uses Mean Squared Error (MSE): 

Lcont =  xcont − Dcont(E(x))  2 (8) For 
discrete features, it uses the Gumbel-Softmax relaxation for differentiable sampling: 
 exp((log(πi) + gi)/τ )  
x̂  = 

(9) 

disc,i Σk exp((log(π ) + g )/τ ) 
where πi are class probabilities, gi Gumbel(0, 1) is Gumbel noise, and τ is the temperature parameter. 
Then, the discriminator is updated to distinguish real latent representation zreal = E(x) 
from adversarial latent zfake = zreal + ε · G(zreal) using the binary cross-entropy loss: 
 
Ldisc = −[log(Dis(zreal)) + log(1 − Dis(zfake))] (10) 
Finally, the generator is updated twice per batch to fool the discriminator while preserv- ing reconstruction 
consistency. Its objective combines adversarial and reconstruction terms, defined as: 
 

Lgen = BCE(Dis(zadv), 1) + λ  x − D(zadv)  
2 (11)
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max(x)−min(x) 
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· 

— 

− − 
→ → 

· 

m 
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Algorithm 1 Adversarial Autoencoder-Based IDS Framework (AIDAE) 
Require: Normal network traffic features =  f1, f2, . . . , fm 
Ensure: Trained AIDAE model, adversarial samples 
Step 1: Data Preprocessing 
1: Load dataset, apply one-hot encoding to categorical features 
2: Normalize using Min-Max normalization: xnorm =   x−min(x)  
3: Split data into normal and malicious samples 
Step 2: Autoencoder Training 
4: Encode: z = E(x) 
5: Reconstruct: x̂ = D(z) 

6: Compute reconstruction loss: Lae =  x x̂  2 

7: Update Autoencoder parameters 
Step 3: Discriminator Training 
8: Encode normal samples to obtain real latent vectors: zreal = E(x) 
9: Generate perturbations: p = G(zreal) 
10: Create fake latent vectors: zfake = zreal + ε p 
11: Train Discriminator: real latent zreal 1, fake latent zfake 0 
12: Update discriminator using Ldisc = [log(Dis(zreal)) + log(1 Dis(zfake))] 
Step 4: Generator Training 
13: Generate perturbations: p = G(zreal) 
14: Create adversarial latent vectors: zadv = zreal + ε p 
15: Decode adversarial traffic: x̂ a d v  = D(zadv) 

16: Compute Generator loss: Lgen = BCE(Dis(zadv), 1) + λ  x x̂ adv  2 

17: Update Generator parameters 
Step 5: IDS Training 
18: Train Random Forest classifier on clean dataset to obtain baseline accuracy 
Step 6: Adversarial Attack Generation 
19: for malicious samples xm do 
20: Encode: zm = E(xm) 
21: Generate perturbations: p = G(zm) 
22: Create adversarial latent vectors: z′ = zm + ε · p 
23: Decode adversarial traffic: xadv = D(z′ ) 
24: Select ε with maximum evasion 
25: end for 
 
Step 7: Attack Evaluation 
26: Evaluate attack by computing adversarial accuracy, accuracy drop, fooling rate, and attack success rate 
 

 
3.2.4 SGAN-IDS 
SGAN-IDS [1] is a model based on a Generative Adversarial Network (GAN) [7] that creates synthetic data. It 
has two parts: one part is the generator and the other is the discriminator. The generator creates synthetic data 
while the discriminator’s job is to try to recognize these samples. In SGAN-IDS, the discriminator and generator 
perform opposing tasks, and a game- like process runs where the generator tries to deceive the system while the 
discriminator tries to catch that deception [7]. From this process the generator learns better each time and tries 
to fool the system; this is based on continuous learning on both sides, which is why SGAN is considered more 
powerful than AIDAE. The structure of the SGAN is presented in Figure 3. 
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v 

 
 

Figure 3: The framework of the SGAN (Self-attention GAN) 
 
The SGAN-IDS model [1] uses another important mechanism called self-attention [6, 8, 9]. This is a mechanism 
that helps the model understand how different parts of an input are related to each other. When data is being 
processed the model does not depend on a single feature but understands relationships between the various 
features of the whole input. This helps the model capture long-range dependencies [27, 28], for example 
patterns in network traffic that are normally ignored when they are far apart. When the self-attention 
mechanism is applied in SGAN [1, 6] the model becomes more powerful because both the generator and 
discriminator work by understanding global feature dependencies [32]. As a result, the generator produces 
adversarial samples that are not only statistically realistic but also semantically similar to real traffic. This 
process helps generate complex and realistic adversarial traffic which is very ef- fective for testing and 
understanding their weaknesses. 
 
3.2.5 Mathematical Formulation of Self-Attention 
The self-attention mechanism computes a weighted sum of all elements in a sequence, allowing each element to 
attend to all others. Given an input feature map h  RC×N where C is the number of channels and N is the 
number of feature locations, the self-attention mechanism transforms h into query, key, and value matrices: 
 

Q = W h ∈ RC′×N (12) 
C′×N 
K = Wkh ∈ R (13) 
V = Wvh ∈ RC×N (14) 
 
′ ′ 
where Wq ∈ RC ×C, W ∈ RC ×C, and W  ∈ RC×C are learned weight matrices, and 
C′ = C/8 is typically chosen for computational efficiency. 
The self-attention matrix is constructed mathematically as follows: 
 
Attention(Q, K, V) = softmax QT K

 
T 
√

d 
V 

(15) 

where dk is the dimension of the key vectors, and the scaling factor 
√

dk prevents the dot 
products from growing too large in magnitude. 
More explicitly, the attention weight βj,i indicating the extent to which the model attends to the i-th location 
when synthesizing the j-th location is: 
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exp(sij) Q(:, i)T K(:, j) 
β = 
i=1 

exp(sij , where sij = 
) d 

(16) 

The output of the self-attention layer is then: 
 
N 
′ = βj,iV(:, i) ∈ RC (17) 
i=1 
This gives the model the facility that it selectively focuses on the most relevant parts of the input when it is 
processing any element. Then, when this is applied in SGAN [1], this ability to understand these dependencies 
means that generator and discriminator both work with a complete view of the features. Consequently, the 
generator produces such an adverse sample which is not only statistically realistic but also semantically close to 
real traffic, which helps in making complex and effective adverse traffic that is used to test and understand the 
weaknesses of the system. 
The network structures of SGAN are shown in Table 3. The generator combines real traffic features with a 10-
dimensional noise vector [7], while the self-attention mechanism [6, 8] uses Q, K, V (Query, Key, Value) 
matrices to refine 64-dimensional hidden representations. The generator’s loss combines BCE with twice-
weighted MSE to confuse the black-box IDS [10, 11]. 
 
Table 3: The network structure of the SGAN-IDS (Part 1: Components and Roles) 

 
Component Architecture Specifications 
Generator (G) 
 
 
 
 
 
 
 
Self- Attention 
 
 
 
 
Discriminator 
(D) 

 
FC(input+noise → 32) + BN 
FC(32 → 64) + BN 
Self-Attention(64 → 64) 
FC(64 → input dim) 
 
 
 
 
 
Q, K, V Linear(64 64) 
+ Softmax 
 
 
 
 
FC(input dim 64) 
FC(64 32) 
FC(32 1) 
+ Dropout(0.2) 

 
Role: Generate adversarial samples Input: Real traffic + Noise 
(10-dim) Output: Adversarial sample (input dim) Activation: 
ReLU ReLU 
Self-Attention Linear 
Loss: BCE (Disc) + 2 IDS confuse (MSE) 
Optimizer: Adam (lr=0.0002) 
Training: Normal traffic 
 
Role: Refine features inside generator Input: 64-dim hidden 
vector Output: 64-dim refined vector Activation: Softmax 
Training: Integrated in Generator 
 
Role: Distinguish real vs fake samples Input: Real or fake 
feature vector Output: Probability (0-1) 
Activation: ReLU ReLU Sigmoid 
Loss: BCE 
Optimizer: Adam (lr=0.0002) 
Training: Real + Generator fake samples 

 
 

h 

k 
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Table 4: The network structure of the SGAN-IDS (Part 2: IDS Components) 

 
Component Architecture Specifications 
Black-Box 
IDS (RF) 
 
 
 
 
Label 
Encoder 

 
Random Forest 
(100 trees) 
 
 
 
 
Scikit-learn 
LabelEncoder 

 
Role: Classify attacks vs benign Input: input dim features  
Output: Attack/Benign label Loss: CE (internal) 
Training: Real traffic only 
 
Role: Encode string labels to numeric 
Input: String labels 
Output: 0-N encoded labels 
Training: Training/test labels 

 
 

 
3.2.6 Training Procedure 
The proposed SGAN-IDS framework is trained for 50 epochs using batch size of 128 with normal traffic 
samples only. The Adam optimizer is configured with learning rate lr = 0.0002 for both Generator and 
Discriminator networks [7]. The training follows a three-step alternating optimization process: 
First, the Discriminator is updated to distinguish between real normal traffic samples and the generator-
produced fake samples using binary cross-entropy loss [7]: 
Ldisc = BCE(Dis(xreal), 1) + BCE(Dis(xfake), 0) (18) where 
xfake = G(xreal, z) with z (0, I) being 10-dimensional Gaussian noise. 
Second, the Generator is updated in two phases: 
(a) To fool the Discriminator using adversarial loss [7]: 
Ladv = BCE(Dis(G(x, z)), 1) (19) 
(b) To confuse the black-box Random Forest IDS classifier [18] by minimizing the MSE between predicted 
labels and zero target [10, 11]: 
Lconfuse = MSE(RF (G(x, z)), 0) (20) 
Finally, the combined Generator loss integrates both objectives with a weight factor of 2 for the IDS confusion 
term [10]: 
 
Lgen = Ladv + 2 × Lconfuse (21) 
The self-attention mechanism [6,8] embedded within the Generator refines the 64-dimensional hidden 
representations during each forward pass to enhance the quality of adversarial perturba- tions [1]. 
3.3 Dataset 
This section describes the NSL-KDD dataset used in this research paper, its content, type, ori- gins, and the 
preprocessing steps applied to prepare the data for model training and evaluation. 
  
Algorithm 2 Self-Attention GAN-Based IDS Framework (SGAN-IDS) 
Require: Normal network traffic features =  f1, f2, . . . , fm 
Ensure: Trained SGAN-IDS model, adversarial samples 
 
Step 1: Data Preprocessing 
1: Load dataset, apply one-hot encoding to categorical features 
2: Normalize using Min-Max normalization: xnorm =   x−min(x)  
3: Split data into normal and malicious samples 
Step 2: Generator Forward Pass with Self-Attention 
4: Combine input traffic features with 10-dimensional random noise vector z R10 
(0, I) 
5: Compute query, key, value matrices: Q = Wqh, K = Wkh, V = Wvh 
6: Apply self-attention mechanism: 
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Attention(Q, K, V) = softmax QT K T 
√

d 
V 

7:  Obtain refined representation: hrefined = Attention(Q, K, V) 
8:  Generate adversarial samples: xfake = G(x, z) 
Step 3: Discriminator Training 
9: Train Discriminator to distinguish real normal traffic xreal from generated samples xfake 
10: Compute discriminator loss: Ldisc = BCE(Dis(xreal), 1) + BCE(Dis(xfake), 0) 
11: Update Discriminator parameters 
Step 4: Generator Training (Two-Phase Update) 
12:  Generate adversarial samples: xfake = G(x, z) 
13: Compute adversarial loss: Ladv = BCE(Dis(G(x, z)), 1) 
14: Compute IDS confusion loss: Lconfuse = MSE(RF (G(x, z)), 0) 15: Compute combined generator 
loss: Lgen = Ladv + 2 Lconfuse 16: Update Generator parameters 
Step 5: IDS Training 
17: Train Random Forest classifier on clean (normal) network traffic samples to obtain baseline detection 
accuracy 
Step 6: Adversarial Attack Generation 
18: for malicious samples xm do 
19: Generate adversarial traffic: xadv = G(xm, z) 
20: Apply self-attention refinement 
21: Select adversarial samples with maximum evasion capability 
22: end for 
Step 7: Attack Evaluation 
23: Evaluate attack by computing adversarial accuracy, accuracy drop, fooling rate, and attack success rate 
 

 
3.3.1 NSL-KDD 
For this research, we used the NSL-KDD dataset because of its widespread use in network intrusion detection 
research. NSL-KDD is a refined version of the KDD Cup ’99 dataset, ad- dressing critical issues such as 
redundant records and class imbalance that plagued the original dataset. The original KDD Cup ’99 dataset was 
created from the 1998 DARPA dataset by MIT Lincoln Laboratory, collected from network data over a 9-week 
period. 
Formally, the NSL-KDD dataset can be represented as: 
 
D = {(xi, yi)}i=1 (22) 
where xi Rd is the feature vector, yi  is the class label, and  = Normal, DoS, Probe, R2L, U2R . The 
dataset comprises 41 features, as shown in Table 4, for each network connection, di- 
vided into four categories: basic features (1-9) extracted from TCP/IP connections, content features (10-22) 
examining TCP packet payload, time-based traffic features (23-31) analyz- ing patterns within 2-second windows, 
and host-based traffic features (32-41) detecting attacks over longer periods [36, 37]. Among these, some features 
are numerical such as duration and count, while others are categorical including protocol type (3 values), service 
(60 values), and flag (11 values) [37]. The dataset contains records labeled as either normal or as one of 24 dif- 
ferent attack types grouped into four main categories: Denial of Service (DoS), Probe, Remote to Local (R2L), 
and User to Root (U2R) [36], as shown in Table 5, with the test data includ- ing 14 additional attack types not 
present in training data, making detection more realistic and challenging. 
Processing the dataset involves normalizing numerical features using min-max scaling to transform values into a 
range between 0 and 1: 
 
 
xnorm 

= 
  x − min(x)  max(x) − min(x) (23) 
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and converting categorical features to numerical format through one-hot encoding. For a categorical feature 
with k possible values, one-hot encoding creates a k-dimensional binary vector: 
xonehot = [1x=v1 , 1x=v2 , . . . , 1x=vk ] (24) 

where 1x=vi is the indicator function that equals 1 if x = vi and 0 otherwise. 
This encoding expands the original 41-dimensional feature space into a 121-dimensional representation [37]. 
 
 
Table 5: The 41 features of the NSL-KDD dataset 

 
No. Feature No. Feature 

 
1 Duration 22 is guest login 
2 protocol type 23 Count 
3 Service 24 srv count 
4 Flag 25 serror rate 
5 src bytes 26 srv serror rate 
6 dst bytes 27 rerror rate 
7 Land 28 srv rerror rate 
8 wrong fragment 29 same srv rate 
9 Urgent 30 diff srv rate 
10 Hot 31 srv diff host rate 
11 num failed logins 32 dst host count 
12 logged in 33 dst host srv count 
13 num compromised 34 dst host same srv rate 
14 root shell 35 dst host diff srv rate 
15 su attempted 36 dst host same src port rate 
16 num root 37 dst host srv diff host rate 
17 num file creations 38 dst host serror rate 
18 num shells 39 dst host srv serror rate 
19 num access files 40 dst host rerror rate 
20 num outbound cmds 41 dst host srv rerror rate 
21 is host login 

 
Table 6: NSL-KDD attack types and classes 

 
Attack Class Attack Type Sample Relevant Feature Example 
DoS Apache2, Back, Pod, Process table, 
Worm, Neptune, Smurf, Land, Udpstorm, Teardrop 
Probe Satan, Ipsweep, Nmap, Portsweep, 
Mscan, Saint 

percentage of packets with 
errors, source bytes 
 
source bytes, duration of 
the connection 

Syn flooding 
 
Port scanning 

R2L Httptunnel, Snmpgetattack, Snmpguess,number of shell prompts Buffer 
Guess Password, Imap, Warezclient, invoked, number of overflow 
Ftp write, Phf, Multihop, Warezmaster, file creations Spy, Xsnoop, Xlock, Sendmail 
U2R Buffer overflow, Xterm, SQL attack, 
Perl, Loadmodule, Loadmodule, 
Ps, Rootkit 

service requested, 
connection duration, 
num of failed login 
attempts 

Password guessing 
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3.4 Performance Evaluation Metrics 
To comprehensively assess the effectiveness of the proposed adversarial attack framework, we employ several 
standard evaluation metrics [24, 25] that measure both the attack’s impact on the IDS and the quality of 
generated adversarial samples. 
 
3.4.1 Accuracy 
Accuracy measures the proportion of correctly classified samples out of the total test samples [25]. It is 
calculated as: 

Accuracy = 
 TP + TN  

TP + TN + FP + FN 

 
(25) 

where TP (True Positives) represents correctly classified attack samples, TN (True Neg- atives) represents 
correctly classified normal samples, FP (False Positives) represents normal samples misclassified as attacks, and 
FN (False Negatives) represents attack samples misclas- sified as normal [25]. 
 
3.4.2 Precision 
Precision measures the proportion of correctly predicted instances among all instances pre- dicted for a specific 
class [24, 25]. For each class, it is calculated as: 

Precision = 
 TP  

TP + FP 

 
(26) 

High precision indicates that when the model predicts a particular attack class, it is likely to be correct, 
minimizing false alarms [23, 25]. 
 
3.4.3 Recall 
Recall measures the proportion of correctly predicted instances among all actual instances of that class [25]. It is 
computed as: 

Recall = 
 TP  

TP + FN 

 
(27) 

High recall indicates that the model successfully identifies most instances of a particular attack type, minimizing 
missed detections [23, 25]. 
 
3.4.4 F1-Score 
F1-Score is the harmonic mean of precision and recall [25], providing a balanced metric that accounts for both 
false positives and false negatives. It is calculated as: 

F1-Score = 2 
Precision × Recall 

Precision + Recall 

 
(28) 

The F1-score is particularly useful for imbalanced datasets where accuracy alone may be misleading [23, 25]. 
 
For multi-class classification, we compute macro-averaged and weighted-averaged metrics. 
The macro-averaged F1-score is: 
 
 
F1macro 

= 
 1  

F1 
|Y| c∈Y 

(29) 

The weighted-averaged F1-score is: 
1 
F1weighted = 
N 

 
 
 
 
Nc 
c∈Y 

 
 
· F1c 

 
 
(30) 

where Nc is the number of samples in class c, and N = 
Σ

c∈Y Nc. 

c 
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3.4.5 Fooling Rate 
The fooling rate measures the proportion of adversarial examples that are misclassified by the IDS [15, 35]: 

Fooling Rate = 
Number of adversarial samples misclassified 

Total number of adversarial samples 

 
(31) 

 
3.4.6 Accuracy Drop 
The accuracy drop quantifies the degradation in IDS performance when tested on adversarial samples: 
 
Accuracy Drop = Accuracyclean − Accuracyadv (32) 
 
3.4.7 Confusion Matrix 
The Confusion Matrix provides a detailed visualization of the classifier’s performance across all attack categories 
[24, 25], showing the distribution of true labels versus predicted labels. Each cell (i, j) in the matrix represents 
the number of samples with true label i that were predicted 
as label j. For a K-class classification problem, the confusion matrix C ∈ RK×K is defined as: 
Cij = |{samples with true label i predicted as label j}| (33) 
This matrix helps identify which attack types are most successfully evaded and which are still detected by the 
IDS after adversarial manipulation [15, 33, 34]. 
 
3.4.8 Training Loss Curves 
We track the training loss curves for all model components across epochs to monitor conver- gence behavior [7, 
26]. For the AIDAE framework, we monitor: 
• Autoencoder Loss (AE): Reconstruction loss measuring how well the autoencoder re- constructs input 
features [2]: 

Lae =  x − D(E(x))  
2 (34) 

 
• Discriminator Loss (D): Binary cross-entropy loss for distinguishing real from fake latent codes [7]: 
LD = −Ez∼P(zreal)[log Dis(z)] − Ez∼P(zfake)[log(1 − Dis(z))] (35) 

 
• Generator Loss (G): Combined adversarial and reconstruction loss for generating effec- tive perturbations 
[7, 10]: 

LG = Ez∼P(z)[log(1 − Dis(G(z)))] + λ  x − D(z + εG(z))  
2 (36) 

 
For the SGAN-IDS framework, we monitor: 
• Generator Loss: LG = BCE(Dis(G(x, z)), 1) + 2 · MSE(RF (G(x, z)), 0) 
• Discriminator Loss: LD = BCE(Dis(xreal), 1) + BCE(Dis(xfake), 0) 
These curves ensure stable adversarial training throughout the learning process and help identify potential 
issues such as mode collapse or training instability [7, 26]. 
 
4 Results and Discussion 
4.1 Experimental Setup 
This study evaluated two adversarial attack methods SGAN [1] and AIDAE [2] against a Ran- dom Forest based 
IDS [18] using the NSL-KDD dataset [3, 36] (125,973 training samples, 22,544 test samples, 122 features [36, 
37], 36 attack categories [36]). 
 
4.1.1 Baseline IDS Performance 
The Random Forest classifier [18] achieved 91.38% accuracy on original test data with strong detection rates for 
major attacks: neptune (99.88% recall), portsweep (100%), smurf (100%), and warezclient (100%). Table 6 
summarizes baseline performance [25, 36, 37]. 
Table 7: Baseline IDS Performance Metrics 
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Metric Value 
Accuracy 91.38% 
Precision (weighted avg) 87.02% 
Recall (weighted avg) 91.38% 
F1-Score (weighted avg) 87.64% 

 
4.1.2 AIDAE Attack Results 
4.1.3 Training Dynamics 
Figure 4 shows AIDAE’s training loss curves over 50 epochs. The autoencoder loss decreased from 0.0010 to 
0.0001, indicating effective reconstruction [2]. However, the discriminator loss collapsed to near-zero by epoch 
20 while the generator loss increased to 18.70, revealing discriminator dominance [7, 26] that limited 
adversarial sample diversity [2, 12]. 
 

 
Figure 4: AIDAE training loss curve 

 
4.1.4 Attack Performance 
AIDAE reduced IDS accuracy from 91.40% to 50.90% (accuracy drop: 40.50%, fooling rate: 41.89%) [2, 15, 
35]. Table 7 presents detailed metrics [25, 33, 34]. 
 
Table 8: AIDAE Attack Performance 
Metric Value 

Accuracy on Original Test Data 91.40% 
Accuracy on Adversarial Test Data 50.90% 
Accuracy Drop 40.50% 
Fooling Rate 41.89% 
Training Epochs 50 
Final Autoencoder Loss 0.0001 
Final Generator Loss 18.70 
Final Discriminator Loss 0.0000 
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Figure 5: Confusion matrix for AIDAE 

 
 
4.1.5 SGAN Attack Results 
4.1.6 Training Dynamics 
Figure 5 illustrates SGAN’s training dynamics with dual-axis visualization. The generator loss (blue) stabilized 
around 220-250 while the discriminator loss (red) converged to approximately 
1.29. This balanced adversarial training [1, 7], where neither component dominates, indicates healthy GAN 
dynamics [7, 26] and effective adversarial sample generation [1, 6]. 
 
 

 
Figure 6: SGAN-IDS training loss curves 
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~ 

4.1.7 Attack Performance 
SGAN achieved devastating effectiveness, reducing IDS accuracy from 91.38% to 21.85% (accuracy drop: 
69.53%, fooling rate: 78%) [1, 6, 10]. Table 8 summarizes SGAN’s im- 
pact [1, 25, 33]. 
 
Table 9: SGAN Attack Performance 

 
Metric Value 

 
Accuracy on Original Test Data 91.38% Accuracy on Adversarial Test Data 21.85% Accuracy Drop
 69.53% 
Fooling Rate ∼78% 
Training Epochs 50 
Final Generator Loss 242.92 
Final Discriminator Loss 1.29 

 

  
Figure 7: Confusion matrix for SGAN 

 
 

4.2 Comparative Analysis 
Table 9 provides direct comparison between attack methods [1, 2, 25, 33]. Table 10: SGAN vs AIDAE 
Comparative Performance 
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Performance Metric SGAN AIDAE Difference 

 
Original Test Accuracy 91.38% 91.40% -0.02% 
Adversarial Test Accuracy 21.85% 50.90% -29.05% 
Accuracy Drop 69.53% 40.50% +29.03% 
Fooling Rate ∼78% 41.89% +36.11% 
Relative Effectiveness 100% 53.7% +86% 

Attack Strategy 
Broad Misclassifica- Normal Mimicry — 

Training Stability Balanced 
Discriminator Domi- 

— 
 

 
 

4.3 Discussion 
4.3.1 Security Implications 
The 78% fooling rate demonstrates critical vulnerabilities in ML-based IDS [1,15,34]. SGAN’s ability to reduce 
accuracy to 21.85% represents a severe security gap enabling undetected net- work infiltration [1, 35]. 
Organizations deploying ML-based IDS must prioritize adversarial robustness [24, 25, 33]. 
 
4.3.2 Why SGAN Outperforms AIDAE 
SGAN’s superiority stems from: 
1. Balanced Training: SGAN achieves Nash equilibrium in the minimax game [1, 7, 26]: 
min max V (D, G) = Ex∼pdata [log D(x)] + Ez∼pz [log(1 − D(G(z)))] (37) 
This enables continuous improvement in both generator and discriminator. 
2. Self-Attention Mechanism: The ability to capture long-range dependencies through: 
  
QKT  

Attention(Q, K, V) = softmax √
d 

V (38) 

enables modeling of complex feature interactions in network traffic [1, 6, 8]. 
3. Broad Misclassification Strategy: SGAN causes systematic confusion across all cate- gories [1, 15] that 
completely undermines IDS reliability versus AIDAE’s single-vector approach [2]. 
4. IDS Confusion Loss: Direct optimization against the target classifier: 
Lconfuse = MSE(RF (G(x, z)), 0) (39) 
generates perturbations that exploit fundamental feature space weaknesses [1, 31] rather than category-specific 
vulnerabilities. 
 
5 Conclusion and Future Work 
In this paper, we address the challenge of evaluating adversarial attacks against machine learning- based intrusion 
detection Systems by establishing a uniform Framework for comparing SGAN- IDS and AIDAE under identical 
experimental conditions. Our evaluation utilizes the NSL- KDD dataset and Random Forest classifier to assess 
the adversarial effectiveness of both meth- ods. Experimental outcomes reveal that SGAN-IDS achieves 
substantially higher attacks ef- fectiveness, reducing IDS accuracy from 91.38% to 21.85% with approximately 
78% fooling rate, demonstrating 86% superior performance compared to AIDAE’s 40.50% accuracy drop. 
These results underscore the critical vulnerabilities in ML-based IDS and highlight the ro- bustness of 
SGAN’s self-attention mechanism and balanced training approach versus AIDAE’s concentrated normal-
mimicry strategy and discriminator dominance. 
Mathematically, we have shown that the adversarial optimization problem: 
xadv = arg max (f (x + δ), y) (40) 
δ  p≤ε 
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f δ  p≤ε 

can be effectively solved by both frameworks, with SGAN achieving superior results due to its ability to model 
complex feature dependencies. 
In future work, we have significant interest in developing robust defense mechanisms against these 
sophisticated adversarial attacks. This includes: 
 
1. Adversarial Training: Incorporating adversarial examples into the training set: 
min E(x,y)∼D

 

max L(f (x + δ), y)

 

(41) 

 
2. Certified Robustness: Developing provable defenses using randomized smoothing: 
g(x) = arg max Pδ∼N (0,σ2I)(f (x + δ) = c) (42) 
c∈Y 
3. Ensemble-Based Detection: Combining multiple IDS architectures to improve resilience against transfer 
attacks. 
4. Adversarial Detection: Developing mechanisms to identify GAN-manipulated traffic using statistical 
fingerprinting and feature-space analysis. 
5. Transferability Analysis: Examining the transferability of adversarial samples across different IDS 
architectures: 
Transfer Rate = P(ftarget(xadv) ̸= y | fsource(xadv) ̸= y) (43) to 
inform universal defense strategies. 
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