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Intrusion  Detection  Systems, Machine learningbased Intrusion Detection Systems (IDS) have become essential
Adversarial Attacks, Generative com- ponents of modern cybersecurity infrastructure yet remain vulnerable to
Adversarial Networks, AIDAE, adversarial attacks that can compromise their effectiveness. This research presents a
SGAN-IDS, SelfAttention  comprehensive compara- tive analysis of two state-of-the-art adversarial generation
Mechanism, Machine Learning frameworks: Anti-Intrusion De- tection Autoencoder (AIDAE) and Self-Attention

Generative Adversarial Network for IDS (SGAN-IDS). Traditional IDS
approaches, including signature-based and anomaly-based methods, suffer from

NSL-KDD  Dataset,
Cybersecurity, Random Forest.

Security,

significant limitations such as inability to detect zero-day attacks and high false
alarm rates. While machine learningbased IDS have addressed some of these
shortcomings, they remain susceptible to carefully crafted adversarial examples

that can evade detection. This study establishes a wuniform experimental
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framework to systemati- cally evaluate and compare the adversarial effectiveness of
AIDAE and SGAN-IDS under identical conditions. Both methods are tested
against a Random Forest classifier using the NSL-KDD dataset, enabling direct
comparison of their adversarial generation capabilities, training dynamics, and
attack strategies. AIDAE combines autoencoder reconstruction with GAN-based
adversarial training to generate semantically consistent adversarial sam- ples,
while SGAN-IDS leverages selfattention mechanisms to capture longrange depen-
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dencies and produce globally consistent adversarial traffic. Through quantitative
evaluation metrics including accuracy degradation, fooling rate, and confusion
matrix analysis, this research provides critical insights into the strengths,

weaknesses, and trade-offs of each approach. The findings reveal fundamental
vulnerabilities in machine learningbased IDS and highlight the urgent need for
adversarialrobust architectures. This study establishes important benchmarks for
adversarial traffic generation and contributes to the development of more resilient
intrusion detection systems capable of defending against sophisticated at- tacks.

1 Introduction

In today’s growing world, digital platforms are the source of connectivity between people, businesses,
government, and all kinds of institutions, where we can instantly share information across the world. These
platforms have greatly promoted communication, but it has made our digital data, infrastructure, and personal
information more vulnerable. We can say that not only individuals, but the entire nation is constantly at risk
of cyber-attacks, data leakage, and disruptions on different scales [24, 25].

To avoid such situations, IDS (Intrusion Detection System) has become an important part of cybersecurity.
Intrusion Detection System plays an important role in identifying all the ma- licious traffic. It plays an
important role in protecting information and systems against such threats [34]. They are generally divided into
two types: Signature-based IDS and Anomaly- based IDS. Signature-based IDS detects attacks by analyzing the
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activity of the system or net- work and comparing it with the known signatures of previous attacks in the data
(25].

They are good at detecting known attacks with non-significant errors and do not produce much false alarms,
but they are not very effective in detecting unknown or zero-day attacks. That is why they must be continuously
updated with new signatures.

To remove this weakness, researchers developed Anomaly-based IDS. This IDS first ob- serves the basic activities
of the network or system as a baseline, but then any activity deviating from this baseline is flagged as anomaly.
They cover the weaknesses of signature-based IDS, but while they are effective in detecting unknown and zero-
day attacks, this strength brings a new problem. These unusual activities are not necessarily malicious. That is why
they also label benign but unusual activities as malicious, which produces large numbers of false alarms [25].
Since both traditional IDS have significant weaknesses, therefore, after discovering the shortcomings of
previous works, researchers use Machine learning-based IDS to analyze or estimate network traffic and system
activities [21,24]. They learn from data how to distinguish between normal and malicious or abnormal behavior,
and they reduce some shortcomings of signature-based and anomaly-based IDS, such as reducing false alarm
rate and detecting un-

known attacks.

In practice, different machine learning models have been used for intrusion detection like Support Vector
Machine (SVM) [19] for classification, Random Forest (RF) [18] for large and complex datasets, K-Nearest
Neighbor (KNN) [20] for pattern recognition, Convolutional Neural Network (CNN) and Deep Learning [21,
22] for capturing non-linear relationships in traffic. These models have proven to be very important and
effective in detecting both known and new and advanced types of attacks [23].

However, despite better detection performance, machine learning-based IDS are not com- pletely foolproof and
still have vulnerabilities to adversarial attacks [15, 16, 33]. In an Adver- sarial attack, a malicious actor
deliberately creates such network traffic that is called adversarial traffic or adversarial examples to deceive
machine learning models. They do this by slightly altering the patterns of traffic signals or network packets so
that the machine learning model misclassifies, such as labeling malicious packets as benign [15]. Therefore,
since machine learning-based IDS rely entirely on learned patterns, their functioning is based on these pat-
terns, which makes them sensitive to such attacks.

To further understand these weaknesses and improve performance, researchers have used different machine
learning models to prepare adversarial samples, and malicious samples are made by bringing perturbation in
traffic, such as changing the content of packets, timestamps, or length of packets unusually, or perturbations are
calculated to exploit the weaknesses of IDS models so that misclassification can happen [16, 17]. Machine
learning-based IDS help in identifying these weaknesses.

Researchers have used a powerful method, the method which we call Generative adversarial network (GAN) [7].
This is an effective way to create sophisticated adversarial samples for testing IDS models. Instead of relying on
simple rule-based perturbations, they use data-driven learning to make flexible and effective adversarial samples
(10, 11]. These prove valuable for testing IDS against advanced threats and for making them more robust
through further adversarial training.

However, GAN also has notable weaknesses in IDS. They often suffer from training insta- bility. They face
difficulty in capturing long-term dependencies in network traffic and some- times prepare such samples that look
statistical but do not have semantic consistency with those attacks in the real world [26].

To overcome these shortcomings, researchers have introduced improved frameworks such as Anti Intrusion
Detection Autoencoder (AIDAE) [2] and Self-Attention GAN, which is called SGAN-IDS [1]. AIDAE (2]
combines the generative abilities of GAN with the reconstruction power of Autoencoder. This can capture
both continuous and discrete traffic features, which makes samples not only statistically realistic but also
semantically consistent. SGAN-IDS [1] uses the self-attention mechanism [6, 8], which lets models focus on
global dependencies instead of long patterns. This captures longrange relations and produces more
sophisticated and diverse adversarial traffic that better simulates complex attack behaviors.

These both advancements have made adversarial generation more realistic and difficult, which makes machine
learning-based IDS stronger. Beyond GAN-based frameworks, several other techniques have also been used in
adversarial traffic generation, such as Particle Swarm, Genetic Algorithm (GA), Adaptive Adversarial Packet
Manipulation (A2PM), Optimization (PSO), and Monte Carlo (MC) approaches [11,13]. Although these
techniques perturb network traffic in different ways, their objective is the same: to produce adversarial
examples so that IDS performance can be tested and evaluated better.
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This research establishes a uniform framework to evaluate the effectiveness of AIDAE [2] and SGAN-IDS [1] in
a controlled environment. By testing their adversarial generative abili- ties against Random Forest [18]
classification on the NSL-KDD dataset [3], this work provides important insights into the trade-off of these
advanced methods and sets a new important bench- mark for preparing realistic machine learning-based IDS.
The primary objective of this research is not to promote cyber-attacks but to reveal the weaknesses of machine
learning-based IDS [34], and our main aim is to highlight these vulner- abilities so that in the future they can be
secured and strengthened.

The main contributions of this research are summarized as follows:

. We propose a uniform evaluation framework that brings AIDAE [2] and SGAN-IDS [1] together under
the same experimental setup and specifically both methods are tested on the NSL-KDD dataset [3] with
Random Forest classifier [18] under identical conditions.

. We conduct comparative analysis of adversarial sample generation, which highlights the strengths and
weaknesses of AIDAE [2] and SGAN-IDS [1]. This explains what aspects make each method more powerful or
weaker.

. We provide quantitative evaluation metrics to systematically assess adversarial effective- ness and to test
trade-off. This helps us understand how and where these models work in realworld intrusion detection
scenarios.

2 Literature Review

The concept of Intrusion Detection Systems first started from anomaly-based security models, which Denning
introduced, and later Anderson improved them. The biggest problem of these early models was that they
produced too many false alarms. A major update in IDS research came when Tavallace et al. published their
study "A Detailed Analysis of the KDD CUP 99 Dataset” [3]. From which the NSL-KDD dataset was
developed. This dataset became astandard, but the IDS models of that time depended on simple statistical
features, because of which attackers could easily evade them. When machine learning was introduced into IDS
design, models such as SVM by Cortes and Vapnik [19], KNN by Cover and Hart [20], Random Forest by Breiman
[18], and deep learning models such as LSTM networks by Hochreiter and Schmidhuber [22] improved the
detection performance significantly.

But large surveys such as Mishra et al.’s ML for IDS [25] and Coulter et al. Intelligent Traffic Analysis [24] show
that machine-learning-based IDSs are very sensitive to adversar- ial manipulation. This vulnerability was first
formally exposed by Biggio et al.; their paper "Evasion Attacks Against Machine Learning at Test Time” [15]
proved that classifiers can be fooled by even a small adversarial noise. Around the same time Goodfellow et al.
Introduced GAN [7], which provided new methods for generating realistic synthetic data and opened the way
for creating adversarial samples in IDS research.

GAN-based IDS attack research was first done by Hu and Tan in their paper "Generating Adversarial Malware
Using GAN” [12], where malware behavior was changed to evade IDS. After that Usama et al. proposed GAN
for Launching and Thwarting Adversarial Attacks on IDS [11], which generated adversarial network traffic.
This work was pioneering, but these approaches had one major limitation: continuous and discrete features were
treated in the same way, because of which the generated samples sometimes became unrealistic.

After this, Lin et al. introduced IDSGAN [10], where the generator learns from the pre- dicted labels of a black-
box IDS and generates adversarial traffic near the decision boundary. But the issue with IDSGAN was that it
queried the IDS too much, discrete features would get distorted, and the semantic structure was not preserved.
To solve these problems, Chen, Wu, Zhao, Sharma, Blumenstein, and Yu proposed AIDAE in 2020 in their
paper "Fooling Intrusion Detection Systems Using Adversarial Autoencoder” [2]. AIDAE combines an encoder,
separate continuous and discrete decoders, and a GAN. The encoder maps raw traffic into latent space. The
continuous and discrete decoders reconstruct features in a realistic form, and for discrete reconstruction AIDAE
uses Gumbel-Softmax. The GAN keeps the latent space natural so that synthetic latent codes appear realistic. A
major advantage of AIDAE is that it generates adversarial traffic without using IDS feedback. AIDAE noticeably
degraded attack detection on NSL-KDD, UNSW-NB15 [4], and CICIDS2017 [5].

Another revolution in deep learning occurred when Vaswani et al. introduced the self- attention mechanism in
"Attention Is All You Need” [8]. Self-attention made it easy to capture long-range dependencies, which is very
useful for complex network-traffic data. Using this concept, Aldhaheri and Alhuzali [1] proposed SGAN-IDS.
SGAN-IDS uses selfattention in- side the generator so it can understand distant feature relationships and
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generate globally con- sistent adversarial samples. SGAN-IDS greatly reduced detection accuracy of multiple
IDS models and generated highly deceptive adversarial flows.

Overall, the research progression is clear: adversarial sample generation for IDS began with simple GAN attacks,
evolved into black-box guided models such as IDSGAN, moved toward semantically consistent frameworks like
AIDAE to preserve feature realism, and finally reached an advanced level with self-attention-based SGAN-IDS. In
our research, both state-of-the-art frameworks, AIDAE [2] and SGAN-IDS [1], are evaluated on the common
NSL-KDD [3] dataset using a Random Forest [18] classifier, allowing a fair and direct comparison of the actual
strengths and weaknesses of each model.

3 Methodology
This section describes the experimental design and the procedural steps used to evaluate ad- versarial traffic
generation methods. We present the conceptual framework, data preprocessing steps, baseline classifier
configuration, adversarial generation techniques (AIDAE and SGAN- IDS), the experimental protocol, and
evaluation metrics.

3.1 Experimental Framework

The primary objective of this research is that two state-of-the-art adversarial sample genera- tion framework
AIDAE and SGAN, be systematically compared under the same experimental conditions and their effect on
Random Forest based IDS detection performance be quantified. And evaluates the regression in detection
performance when the baseline ideas encounter these adversarial samples. This comprehensive evaluation
framework enables direct comparison of adversarial effectiveness while maintaining controlled experimental
conditions throughout the study.

Data preprocessing

4 Clean and
RawNSLKDD |, pooode Normalize |_,| Train Test |
dataset data features Split
\ Adversarial Sample Generation
IDS Evaluation under attack
/
Baseline IDS Encode Test IDS
inputto Add Enforce with AIDAE|
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Latent , - , samples
Train — space Validity \ /- | Evasion Rate
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Figure 1: Adversarial sample generation framework AIDAE and SGAN

1.1 Intrusion Detection System
1.1.1 Random Forest
For IDS, we choose random forest algorithm [18] because it is fast and reliable in classification. The model is an
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ensemble of decision trees, and its final prediction is based on a majority vote of the individual trees. Random
forest is configured with some specific hyperparameters so that the result is reproducible, and the performance
is optimal.

Formally, a Random Forest is an ensemble of T decision trees {ht(x; @t)JT where Ot are

independent and identically distributed random vectors. The final prediction for a given input

x € Rd is:

y"~ = majority vote{ht(x; Ot)}T (1)

For regression tasks, the prediction is the average:

y'=1Xh(x0) (2)

For training, 80 percent of training data is used for training, and 20 percent data is set for validation. We test
the model on testing data to evaluate whether the model works correctly on new and unseen data.

Table 1: Random Forest Hyperparameter Configuration

Hyperparameter Value Justification

Balances performance

Number of Estimators (n estimators) 100 and computational ef- ficiency
Max Depth None Allows trees to ex- pand until pure leaves are
achieved
2 Standard value for un- restricted tree growth
Min Samples Split
Min Samples Leaf

Permits fine-grained decision boundaries
Reduces correla-

Max Features — sqrt tion among  trees:
max featpres_ =
Bootstrap res- 7
n features -

True  Enables bagging for variance reduction
Random State

42 Ensures reproducibil- ity across experiments
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3.2 Adversarial Generation Techniques

We created adversarial samples by making small and carefully planned changes in the features [15, 16]. We made
such small changes in features so that data seems normal to both humans and ML-based IDS.

First, adversarial samples were prepared in such a way that the record’s features were given small changes. These
changes were made in such a manner that they do not appear much, but they are enough to deceive the system.
The purpose of making these changes is that the system understands it in a wrong way.

Mathematically, given a legitimate sample x R* with trueabel y, we seek an adversarial sample x.. such that:

Xadv = X + 8, 61|, <& 3)
f (Xad) <, while fx) =1y (4) where f : R is the IDS
classifier, 8 is the perturbation vector, || I , is the Lynorm,

and € is the perturbatior b¥idget.

3.2.1 AIDAE (Anti Intrusion Detection Autoencoder)

This AIDAE [2] is a model in which the Auto-Encoder and the Generative Adversarial Network (GAN) [7] are
combined to design a system that generates adversarial network traffic which confuses the Intrusion Detection
System (IDS). Its main purpose is to create synthetic traffic features that look like normal data but are not
actually real.

AIDAE’s structure consists of two parts: The Encoder compresses the original network traffic data (both
continuous and discrete features) into a small latent representation. The De- coder then reconstructs that
compressed data back into its original form; however, instead of making an exact copy, the model slightly
modifies the data so that it appears like normal traffic but behaves slightly differently during the detection phase.
The structure of the AIDAE is pre- sented in Figure 2. AIDAE’s adversarial component comes from its GAN
integration [7], where the generator produces random latent codes, and the discriminator checks whether these
gener- ated feature codes come from the real distribution or from the synthetic one. This adversarial training
helps the model learn the distribution of normal data more accurately and generates traffic that appears normal
but is actually adversarial in nature. To guide this learning, AIDAE uses two types of loss functions [2].

, Reconstructed

»  Decoder Traffic
» Encoder — ‘L’atetnt
ector Perturbed S——
»  Generator »  Latent —Discriminator—» ca: Of Fake
Vector Output
Minimize
Reconstruction
J Loss
Data ADAE AIDAE | Discriminator

‘ ] . — — Classifies
preprocessing Architecture Training T

Generator
Fools

Disciminator Adversarial
Acuracy
Attack Find Best Generatfz Adversarial Evaluation
— — —» Adversarial .
Train Generation Epsilon Examples Samples | 3 and
Baseline o 4 s Results
Ramdom —— —
Forest Accuracy } Attack
- Success Rate

Figure 2: The framework of the AIDAE (anti-intrusion detection autoencoder)

Reconstruction Loss measures how accurately the autoencoder has reconstructed the input data. It ensures that
the generated features remain close to the original distribution. Adversar- ial Loss helps the generator to create
features that can fool the IDS, making it classify malicious traffic as normal.

By combining both losses, AIDAE [2] produces adversarial samples that are close to real traffic but effectively
deceive the IDS. In this project, AIDAE was applied to the NSL-KDD dataset [3] and tested on a pre-trained
Random Forest [18] IDS model. The results showed that when the IDS was tested with AIDAE generated data,
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its accuracy dropped, which proves that the model has the ability to mislead detection systems.

3.2.2 Mathematical Formulation of AIDAE

The training objective of the AIDAE model combines the Autoencoder reconstruction loss

and the Adversarial loss from the GAN component.

Let R! Ke dhe input space. The encoder E : R*  R' maps #wput x eEX a latent
representation z = E(x) R, wiere | is the latent dimension. The decoder D : R'  R? reconssructs the
input from the latent representation: ¥ = D(z) = D(E(x)).

The generator G : R'  R' produices perturbations in the latent space: & = G(z). The adversarial latent
representation is:

Zadv = 2+ E - G(Z) (5)
where ¢ is the perturbation budget.
The discriminator Dis : R 49, 1] distinguishes between real latent codes z.a = E(x)

and fake latent codes zuke = Zua.
The overall objective function can be expressed as:

min max E.-pgllog Dis(c)] + E.~pyllog(1 — Dis(G(z)))] + AL )
G,E D

where:

. G: Generator

. Dis: Discriminator

. E: Encoder

. L.: Reconstruction loss

. P(c): Real data distribution

. P(z): Latent distribution from encoder

. A: Weight coefficient balancing the losses

The network structure of AIDAE is shown in Table 2, where input-dim is the dimension of the input features, z
is representing the 64-dimensional latent vector, & is the perturbation generated in the latent space, A is the

weight coefficient balancing MSE and BCE losses, and Ir is the learning rate of the Adam optimizer set to
0.001 to fool the target IDS classifier.

Table 2: The network structure of the AIDAE

Component Encoder (E) Decoder (D) Pet:turbatlon B Discriminator (Dis)
Role Converts X  to Reconstructs X GenttB&I AL S) Distinguishes real/fake z
latent z from latent z 6 in latent space Linear(64 — 128)
Architecture Linear(in — Z56) Linear(64 — 128) Linear(64 — 128) Linear(1Z28 — 64)
Linear(256 — 128) Linear(128 — 256) Linear(128 — 128) Linear(64 — 1)
Linear(128 — 64) Linear(256 — in) Linear(128 — 64)
Input Size mp;t dim - fea- 64-dim latent 64-dim latent 64-dim latent

IcS . .
Output Size 64-dim latent nput dim —fe 0y fim pert. Probability [0, 1]

tures

Activation RelLU ReLU RelLU LeakyReLU(0.2) Sigmoid
RelLU RelLU Tanh
None Sigmoid
Loss Function MSE MSE BCE +A - MSE  BCE
Optimizer Adam (Ir=0.001) Adam (Ir=0.001) Adam (Ir=0.005) Adam (Ir=0.001)
Training Data Normal only Normal only Normal only Real + Fake latent
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3.2.3 Training Procedure

The AIDAE framework is trained for 50 epochs with a batch size of 128 using only normal traffic samples. The
ADAM optimizer is used for all components, with learning rates of 0.001 for the Encoder, Decoder, and
discriminator, and 0.005 for the Generator, while keeping the default momentum parameters §; = 0.9 and S,
= 0.999. The reconstruction loss weight is set to A = 0.5, the latent dimension is 64, and the training epsilon is
fixed at € = 0.3. During training, three optimization steps are performed in an alternating manner.

First, the autoencoder (Encoder-Decoder) is updated by minimizing the reconstruction loss:

d >

2
L-rec = HX — D(E(X))H = (Xi - ,')Ei)z (7)
i=1

For mixed feature types (continuous and discrete), AIDAE employs separate decoders. For continuous features,
it uses Mean Squared Error (MSE):
2
Lcom = HXcom - Dcom(E(X)) || (8) FOI‘
discrete features, it uses the Gumbel-Softmax relaxation for differentiable sampling:
exp((log(m) + g)/T) )

2 -
disc,i X

exp((log(m) + ¢ )/T) j=1 j j
where T are class probabilities, g Gumbel(0, 1) is Gumbel noise, and T is the temperature parameter.

Then, the discriminator is updated to distinguish real latent representation z.a = E(x)
from adversarial latent zue = zwa *+ € + G(zew) using the binary cross-entropy loss:

Lause = —[log(Dis(zrea)) + log(1 — Dis(zuke))] (10)
Finally, the generator is updated twice per batch to fool the discriminator while preserv- ing reconstruction
consistency. Its objective combines adversarial and reconstruction terms, defined as:

2
Lgen = BCE(DiS(ZadV), 1) + A”X - D(Zad«u) (1 1)
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Algorithm 1 Adversarial Autoencoder-Based IDS Framework (AIDAE)
Require: Normal network traffic features F fff,.. . f. }
Ensure: Trained AIDAE model, adversarial samples

Step 1: Data Preprocessing

1: Load dataset, apply one-hot encoding to categorical features

xX_min(x)

2: Normalize using Min-Max normalization: Xuem =
3. Split data into normal and malicious samples
Step 2: Autoencoder Training

4: Encode: z = E(x)

5: Reconstruct: ¥ = D(z)

max(X)—min(x)

6: Compute reconstruction loss: Le = ||x x| ’

7: Update Autoencoder parameters

Step 3: Discriminator Training

8: Encode normal samples to obtain real latent vectors: zea = E(x)

9: Generate perturbations: p = G(z.u)

10: Create fake latent vectors: zjke = Zwa + € P

11: Train Discriminator: real latent zea 4 fake latent zu ©
12: Update discriminator using Lus = [feg(Dis(zwa)) + log(1 Bis(zuke))]
Step 4: Generator Training

13: Generate perturbations: p = G(za)

14: Create adversarial latent vectors: zuy = Zweal + € P

15: Decode adversarial traffic: X aav = D(Zatv)

16: Compute Generator loss: Len = BCE(Dis(za), 1) + A x Kadv
17: Update Generator parameters

Step 5: IDS Training

18: Train Random Forest classifier on clean dataset to obtain baseline accuracy
Step 6: Adversarial Attack Generation

19: for malicious samples x» do

20: Encode: z. = E(xm)

21: Generate perturbations: p = G(zu)

22: Create adversarial latent vectors: z =z, + € p
23: Decode adversarial traffic: x. = D(z' ) m
24: Select € with maximum evasion

25: end for

Step 7: Attack Evaluation
26: Evaluate attack by computing adversarial accuracy, accuracy drop, fooling rate, and attack success rate

3.24 SGAN-IDS

SGAN-IDS [1] is a model based on a Generative Adversarial Network (GAN) [7] that creates synthetic data. It
has two parts: one part is the generator and the other is the discriminator. The generator creates synthetic data
while the discriminator’s job is to try to recognize these samples. In SGAN-IDS, the discriminator and generator
perform opposing tasks, and a game- like process runs where the generator tries to deceive the system while the
discriminator tries to catch that deception [7]. From this process the generator learns better each time and tries

to fool the system; this is based on continuous learning on both sides, which is why SGAN is considered more
powerful than AIDAE. The structure of the SGAN is presented in Figure 3.
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Figure 3: The framework of the SGAN (Self-attention GAN)

The SGAN-IDS model [1] uses another important mechanism called self-attention [6, 8, 9]. This is a mechanism
that helps the model understand how different parts of an input are related to each other. When data is being
processed the model does not depend on a single feature but understands relationships between the various
features of the whole input. This helps the model capture longrange dependencies [27, 28], for example
patterns in network traffic that are normally ignored when they are far apart. When the self-attention
mechanism is applied in SGAN [1, 6] the model becomes more powerful because both the generator and
discriminator work by understanding global feature dependencies [32]. As a result, the generator produces
adversarial samples that are not only statistically realistic but also semantically similar to real traffic. This
process helps generate complex and realistic adversarial traffic which is very ef- fective for testing and
understanding their weaknesses.

3.2.5 Mathematical Formulation of Self-Attention

The self-attention mechanism computes a weighted sum of all elements in a sequence, allowing each element to
attend to all others. Given an input feature map h R“" where C is the number of channels and N is the
number of feature locations, the self-attention mechanism transforms h into §ery, key, and value matrices:

Q=W heRN q (12)
C'<xN

K =Wih € R (13)
V = W,h € R“¥ (14)
where W, € R, W & R°C and W € R are learned weight matrices, and

C' = C/8 is typically chosen for computational efficiency.
The self-attention matrix is constructed mathematically as follows:

Attention(Q, K, V) = softmax Q7 K (15)
T
1/ —V
d k

where di is the dimension of the key vectors, and the scaling factor di prevents the dot

products from growing too large in magnitude.

More explicitly, the attention weight §;; indicating the extent to which the model attends to the i-th location
when synthesizing the j-th location is:
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exp(sy) QG, )TKC, j)
g ii > explss—,— wheres; = \/_(16)
i=1 ) d «

The output of the self-attention layer is then:

N =
- h,  B.V( i) € RC

i=1

This gives the model the facility that it selectively focuses on the most relevant parts of the input when it is
processing any element. Then, when this is applied in SGAN [1], this ability to understand these dependencies
means that generator and discriminator both work with a complete view of the features. Consequently, the
generator produces such an adverse sample which is not only statistically realistic but also semantically close to
real traffic, which helps in making complex and effective adverse traffic that is used to test and understand the
weaknesses of the system.

The network structures of SGAN are shown in Table 3. The generator combines real traffic features with a 10-
dimensional noise vector [7], while the self-attention mechanism [6, 8] uses Q, K, V (Query, Key, Value)
matrices to refine 64-dimensional hidden representations. The generator’s loss combines BCE with twice-

weighted MSE to confuse the black-box IDS [10, 11].

(17)

Table 3: The network structure of the SGAN-IDS (Part 1: Components and Roles)

Component

Architecture

Specifications

Generator (G)

FC(input+noise — 32) + BN
FC(32 — 64) + BN
Self-Attention(64 —  64)
FC(64 — input dim)

Role: Generate adversarial samples Input: Real traffic + Noise
(10-dim) Output: Adversarial sample (input dim) Activation:
RelLU RelU —

Self-Attention Hinear

Loss: BCE (Disc) + 2 IDS gonfuse (MSE)

Optimizer: Adam (Ir=0.0002)

Training: Normal traffic

Self- Attention

Q, K, V Linear(64 64)

+ Softmax

Role: Refine features inside generator Input: 64-dim hidden
vector Output: 64-dim refined vector Activation: Softmax
Training: Integrated in Generator

Discriminator

(D)

FC(input dim. %)

FC(64 33)
FC(32 b
+ Dropout(0.2)

Role: Distinguish real vs fake samples Input: Real or fake
feature vector Output: Probability (0-1)

Activation: ReLU RelU  Sigmoid

Loss: BCE

Optimizer: Adam (Ir=0.0002)

Training: Real + Generator fake samples
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Table 4: The network structure of the SGAN-IDS (Part 2: IDS Components)

Component Architecture Specifications

Black-Box -

IDS (RF) Random Forest Role: Classify attacks vs benign Input: input dim features
(100 trees) Output: Attack/Benign label Loss: CE (internal)

Training: Real traffic only

Role: Encode string labels to numeric

Label Input: String labels
Encoder Scikit-learn Output: O-N encoded labels
LabelEncoder Training: Training/test labels

3.2.6 Training Procedure

The proposed SGAN-IDS framework is trained for 50 epochs using batch size of 128 with normal traffic
samples only. The Adam optimizer is configured with learning rate lr = 0.0002 for both Generator and
Discriminator networks [7]. The training follows a three-step alternating optimization process:

First, the Discriminator is updated to distinguish between real normal traffic samples and the generator-
produced fake samples using binary cross-entropy loss [7]:

Liise = BCE(Dis(xveat), 1) + BCE(Dis(xake), O) (18) where
Xfake = G(Xreal, z) With z (0, I) being 10-dimensional Gaussian noise.

Second, the Generator is updated in two phases:

(a) To fool the Discriminator using adversarial loss [7):

L.w = BCE(Dis(G(x, z)), 1) (19)

(b) To confuse the black-box Random Forest IDS classifier [18] by minimizing the MSE between predicted
labels and zero target [10, 11]:

Leoniuise = MSE(RF (G(x, z)), 0) (20)

Finally, the combined Generator loss integrates both objectives with a weight factor of 2 for the IDS confusion

term [10]:

Lgen = Lado *+ 2 * Lconfuse 21)

The selfattention mechanism [6,8] embedded within the Generator refines the 64-dimensional hidden
representations during each forward pass to enhance the quality of adversarial perturba- tions [1].

3.3 Dataset

This section describes the NSL-KDD dataset used in this research paper, its content, type, ori- gins, and the
preprocessing steps applied to prepare the data for model training and evaluation.

Algorithm 2 Self-Attention GAN-Based IDS Framework (SGAN-IDS)

Require: Normal network traffic features F fff,... f. }
Ensure: Trained SGAN-IDS model, adversarial samples

Step 1: Data Preprocessing
1: Load dataset, apply one-hot encoding to categorical features

x_min(x)

2: Normalize using Min-Max normalization: Xuem =

. . .. max(X)—min(x)
3: Split data into normal and malicious samples

Step 2: Generator Forward Pass with Self-Attention

4: Combine input traffic features with 10-dimensional random noise vector z &K' ~
OD N

5: Compute query, key, value matrices: Q = W;h, K=W;h, V = W,h

6: Apply self-attention mechanism:
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Attention(Q, K, V) = softmax Q'K T

V< T—V

d k

7: Obtain refined representation: hwind = Attention(Q, K, V)
8: Generate adversarial samples: xu. = G(x, z)
Step 3: Discriminator Training
9: Train Discriminator to distinguish real normal traffic X« from generated samples Xy
10: Compute discriminator loss: Lasc = BCE(Dis(Xrat), 1) + BCE(Dis(xate), O)
11: Update Discriminator parameters
Step 4: Generator Training (Two-Phase Update)
12: Generate adversarial samples: xuk = G(x, z)
13: Compute adversarial loss: L.w = BCE(Dis(G(x, z)), 1)
14: Compute IDS confusion loss: Lewuse = MSE(RF (G(x, z)), 0) 15: Compute combined generator
loss: Lgen = Lagw + 2 Eonsise 16: Update Generator parameters
Step 5: IDS Training
17: Train Random Forest classifier on clean (normal) network traffic samples to obtain baseline detection
accuracy
Step 6: Adversarial Attack Generation
18: for malicious samples xn do

19: Generate adversarial traffic: xuw = G(xm, 2)

20: Apply self-attention refinement

21: Select adversarial samples with maximum evasion capability
22: end for

Step 7: Attack Evaluation
23: Evaluate attack by computing adversarial accuracy, accuracy drop, fooling rate, and attack success rate

3.3.1 NSLKDD

For this research, we used the NSL-KDD dataset because of its widespread use in network intrusion detection
research. NSL-KDD is a refined version of the KDD Cup ’99 dataset, ad- dressing critical issues such as
redundant records and class imbalance that plagued the original dataset. The original KDD Cup ’99 dataset was
created from the 1998 DARPA dataset by MIT Lincoln Laboratory, collected from network data over a 9-week
period.

Formally, the NSL-KDD dataset can be represented as:

D = {(Xi, }’i)}i:] [‘((22)

where xi R? is the feature vector, yi  is the class label, and = Normal, DoS, Probe, R2L, U2R . The
dataset comp§ses 41 features, as shown in Tab¥e 4, for each network co¥nect{on, di-

vided into four categories: basic features (1-9) extracted from TCP/IP connections, content features (10-22)
examining TCP packet payload, time-based traffic features (23-31) analyz- ing patterns within 2-second windows,
and host-based traffic features (32-41) detecting attacks over longer periods [36, 37]. Among these, some features
are numerical such as duration and count, while others are categorical including protocol type (3 values), service
(60 values), and flag (11 values) [37]. The dataset contains records labeled as either normal or as one of 24 dif-
ferent attack types grouped into four main categories: Denial of Service (DoS), Probe, Remote to Local (R2L),
and User to Root (U2R) [36], as shown in Table 5, with the test data includ- ing 14 additional attack types not
present in training data, making detection more realistic and challenging.

Processing the dataset involves normalizing numerical features using min-max scaling to transform values into a
range between O and 1:

£23) min(x) max(x) — min(x)

Xnorm
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and converting categorical features to numerical format through one-hot encoding. For a categorical feature
with k possible values, one-hot encoding creates a k-dimensional binary vector:

Xonehot = [Ix=v1, Ix=02, .. ., Ix=0k | (24)

where 1x=y; is the indicator function that equals 1 if x = v; and O otherwise.

This encoding expands the original 41-dimensional feature space into a 121-dimensional representation [37].

Table 5: The 41 features of the NSL-KDD dataset

No. Feature No. Feature

1 Duration 22 is guest login

2 protocol type 23 Count

3 Service 24 srv count

4 Flag 25  serror rate

5 stc bytes 26 srv serror rate

6 dst bytes 27  rerror rate

7 Land 28  srv rerror rate

8 wrong fragment 29  same srv rate

9 Urgent 30 diff srv rate

10 Hot 31  srv diff host rate

11 num failed logins 32 dst host count

12 logged in _ 33 dst host sry count

13 num compromised 34 dst host same srv rate
14 root shell 35 - dst host diff srv rate
15 su attempted 36 . dst host same src port rate
16 num root 37  dst host srv diff host rate
17 num file creations 38  dst host serror rate

18 num shells 39  dst haost srv serror rate
19 num access files 40  dst hast rerror rate

20 num outbound cmds 41  dst hast sry rerror rate

21 is host login

Table 6: NSL-KDD attack types and classes

Attack Class Attack Type Sample Relevant Feature Example
DoS Apache2, Back, Pod, Process table, percentage of packets with  Syn flooding
Worm, Neptune, Smurf, Land, Udpstorm, Teardrop errors, source bytes
Probe Satan, Ipsweep, Nmap, Portsweep, Port scanning
Mscan, Saint source bytes, duration of

the connection
R2L Httptunnel, Snmpgetattack, Snmpguess,number of shell prompts Buffer
Guess Password, Imap, Warezclient, invoked, number of  overflow
Ftp write, Phf, Multihop, Warezmaster, file creations Spy, Xsnoop, Xlock, Sendmail
U2R Buffer overflow, Xterm, SQL attack, service requested, Password guessing
Perl, Loadmodule, Loadmodule,” connection duration,
Ps, Rootkit num of failed login

attempts
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3.4 Performance Evaluation Metrics

To comprehensively assess the effectiveness of the proposed adversarial attack framework, we employ several
standard evaluation metrics [24, 25] that measure both the attack’s impact on the IDS and the quality of
generated adversarial samples.

3.4.1 Accuracy
Accuracy measures the proportion of correctly classified samples out of the total test samples [25]. It is

calculated as:

A 3 TP + TN
ccuracy = (25)

TP+ TN + FP + FN

where TP (True Positives) represents correctly classified attack samples, TN (True Neg- atives) represents
correctly classified normal samples, FP (False Positives) represents normal samples misclassified as attacks, and
FN (False Negatives) represents attack samples misclas- sified as normal [25].

3.4.2 Precision

Precision measures the proportion of correctly predicted instances among all instances pre- dicted for a specific
class (24, 25]. For each class, it is calculated as:

. TP
Precision = (26)

TP + FP
High precision indicates that when the model predicts a particular attack class, it is likely to be correct,
minimizing false alarms [23, 25].

343 Recall
Recall measures the proportion of correctly predicted instances among all actual instances of that class [25]. It is
computed as:

o gu
Recall = (27)

TP + FN
High recall indicates that the model successfully identifies most instances of a particular attack type, minimizing
missed detections [23, 25].

3.44 Fl1-Score
F1-Score is the harmonic mean of precision and recall [25], providing a balanced metric that accounts for both
false positives and false negatives. It is calculated as:

Precision x Recall

F1-Score = 2

Precision + Recall

(28)

x

The Fl-score is particularly useful for imbalanced datasets where accuracy alone may be misleading [23, 25].

For multi-class classification, we compute macro-averaged and weighted-averaged metrics.
The macro-averaged Fl-score is:

L =

Flmacro
Y] cEY

The weighted-averaged Fl-score is:
1
Flyeighted = - Fl. (30)
N =

N

cEY
where N. is the number of samples in class c,and N = gy N.
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3.4.5 Fooling Rate
The fooling rate measures the proportion of adversarial examples that are misclassified by the IDS [15, 35]:

) Number of adversarial samples misclassified
Fooling Rate = (31)

Total number of adversarial samples

3.4.6 Accuracy Drop
The accuracy drop quantifies the degradation in IDS performance when tested on adversarial samples:

Accuracy Drop = Accuracyleqn — Accuracygdy (32)

3.4.7 Confusion Matrix

The Confusion Matrix provides a detailed visualization of the classifier’s performance across all attack categories
(24, 25], showing the distribution of true labels versus predicted labels. Each cell (i, j) in the matrix represents
the number of samples with true label i that were predicted

as label j. For a K-class classification problem, the confusion matrix C € R¥* is defined as:

Cy = |{samples with true label i predicted as label j} | (33)

This matrix helps identify which attack types are most successfully evaded and which are still detected by the
IDS after adversarial manipulation [15, 33, 34].

3.4.8 Training Loss Curves
We track the training loss curves for all model components across epochs to monitor conver- gence behavior (7,
26]. For the AIDAE framework, we monitor:

. Autoencoder Loss (AE): Reconstruction loss measuring how well the autoencoder re- constructs input
features [2]:

2
Le = |[x — DE)| G4
. Discriminator Loss (D): Binary cross-entropy loss for distinguishing real from fake latent codes [7]:
Lo = —E.<rereq)llog Dis(z)] — E.vrefyke)llog(l — Dis(2)] (35)
. Generator Loss (G): Combined adversarial and reconstruction loss for generating effec- tive perturbations
[7, 10]:

2

L = E.~rpllog(l — Dis(G(2)] + Al x — D(z + £G(2))|| (36)

For the SGAN-IDS framework, we monitor:

. Generator Loss: Lc = BCE(Dis(G(x, z)), 1) + 2 - MSE(RF (G(x, z)), O)

. Discriminator Loss: Lp = BCE(Dis(xwal), 1) + BCE(Dis(xfake), O)

These curves ensure stable adversarial training throughout the learning process and help identify potential
issues such as mode collapse or training instability [7, 26].

4 Results and Discussion

4.1 Experimental Setup

This study evaluated two adversarial attack methods SGAN [1] and AIDAE [2] against a Ran- dom Forest based
IDS [18] using the NSL-KDD dataset [3, 36] (125,973 training samples, 22,544 test samples, 122 features [36,
37], 36 attack categories [36]).

4.1.1 Baseline IDS Performance
The Random Forest classifier [18] achieved 91.38% accuracy on original test data with strong detection rates for
major attacks: neptune (99.88% recall), portsweep (100%), smurf (100%), and warezclient (100%). Table 6

summarizes baseline performance [25, 36, 37].
Table 7: Baseline IDS Performance Metrics
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Metric Value
Accuracy 91.38%
Precision (weighted avg) 87.02%
Recall (weighted avg) 91.38%
F1-Score (weighted avg) 87.64%

4.1.2 AIDAE Attack Results

4.1.3 Training Dynamics

Figure 4 shows AIDAE’s training loss curves over 50 epochs. The autoencoder loss decreased from 0.0010 to
0.0001, indicating effective reconstruction [2]. However, the discriminator loss collapsed to near-zero by epoch
20 while the generator loss increased to 18.70, revealing discriminator dominance [7, 26] that limited
adversarial sample diversity (2, 12].

AIDAE Training Loss Curve

- Autoencoder LOsS
= Discriminator Loss

17.51 — Generator LOSS

15.0 4

5.0 4

2.5

0.0 -

0 10 20 30 prs 50
Epoch
Figure 4: AIDAE training loss curve

4.14  Attack Performance
AIDAE reduced IDS accuracy from 91.40% to 50.90% (accuracy drop: 40.50%, fooling rate: 41.89%) (2, 15,
35]. Table 7 presents detailed metrics [25, 33, 34].

Table 8: AIDAE Attack Performance

Metric Value
Accuracy on Original Test Data 91.40%
Accuracy on Adversarial Test Data 50.90%
Accuracy Drop 40.50%
Fooling Rate 41.89%
Training Epochs 50
Final Autoencoder Loss 0.0001
Final Generator Loss 18.70
Final Discriminator Loss 0.0000
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4.1.5
4.1.6

Training Dynamics

Figure 5 illustrates SGAN'’s training dynamics with dual-axis visualization. The generator loss (blue) stabilized

around 220-250 while the discriminator loss (red) converged to approximately

1.29. This balanced adversarial training [1, 7], where neither component dominates, indicates healthy GAN

dynamics [7, 26] and effective adversarial sample generation [1, 6].

SGAN-IDS Training Loss Curve (Dual Axis)
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Figure 6: SGAN-IDS training loss curves
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4.1.7 Attack Performance

SGAN achieved devastating effectiveness, reducing IDS accuracy from 91.38% to 21.85% (accuracy drop:

69.53%, fooling rate:
pact [1,25,33].

Table 9: SGAN Attack Performance

78%) (1, 6, 10]). Table 8 summarizes SGAN’s im-

Metric

Value

Accuracy on Original Test Data

Fooling Rate

Training Epochs

Final Generator Loss
Final Discriminator Loss

91.38% Accuracy on Adversarial Test Data

69.53%

~18%

50

242.92

1.29

21.85% Accuracy Drop
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Figure 7: Confusion matrix for SGAN
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Table 9 provides direct comparison between attack methods [1, 2, 25, 33]. Table 10: SGAN vs AIDAE
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Performance Metric SGAN AIDAE Difference
Original Test Accuracy 91.38% 91.40% 0.02%
Adversarial Test Accuracy 21.85% 50.90% -29.05%
Accuracy Drop 69.53% 40.50% +29.03%
Fooling Rate ~78% 41.89% +36.11%
Relative Effectiveness 100% 53.7% +86%
Attack Strategy Bro.ad Misclassifica-  Normal Mimicry —
tion Discriminator Domi-
Training Stability Balanced —

nant

4.3 Discussion

4.3.1 Security Implications

The 78% fooling rate demonstrates critical vulnerabilities in ML-based IDS [1,15,34]. SGAN’s ability to reduce
accuracy to 21.85% represents a severe security gap enabling undetected net- work infiltration [1, 35].
Organizations deploying ML-based IDS must prioritize adversarial robustness (24, 25, 33].

4.3.2 Why SGAN Outperforms AIDAE

SGAN’s superiority stems from:

1. Balanced Training: SGAN achieves Nash equilibrium in the minimax game [1, 7, 26]:
min max V (D, G) = Ey~pdatq [log D(x)] + E.~py [log(1 — D(G(2)))] 3D
This enables continuogs imgrovement in both generator and discriminator.

2. Self-Attention Mechanism: The ability to capture long-range dependencies through:

QKT
Attention(Q, K, V) = softmax W/d__V (38)

enables modeling of complex feature interactions in network traffic [1, 6, 8].

3. Broad Misclassification Strategy: SGAN causes systematic confusion across all cate- gories [1, 15] that
completely undermines IDS reliability versus AIDAE’s single-vector approach [2].

4, IDS Confusion Loss: Direct optimization against the target classifier:

Leonfuse = MSE(RF (G(x, z)), 0) 39)
generates perturbations that exploit fundamental feature space weaknesses [1, 31] rather than category-specific
vulnerabilities.

5 Conclusion and Future Work

In this paper, we address the challenge of evaluating adversarial attacks against machine learning- based intrusion
detection Systems by establishing a uniform Framework for comparing SGAN- IDS and AIDAE under identical
experimental conditions. Our evaluation utilizes the NSL- KDD dataset and Random Forest classifier to assess
the adversarial effectiveness of both meth- ods. Experimental outcomes reveal that SGAN-IDS achieves
substantially higher attacks ef- fectiveness, reducing IDS accuracy from 91.38% to 21.85% with approximately
78% fooling rate, demonstrating 86% superior performance compared to AIDAE’s 40.50% accuracy drop.
These results underscore the critical vulnerabilities in ML-based IDS and highlight the ro- bustness of
SGAN’s self-attention mechanism and balanced training approach versus AIDAE’s concentrated normal-
mimicry strategy and discriminator dominance.

Mathematically, we have shown that the adversarial optimization problem:

Xadv = arg max fx + 8),y) 40)

81 pse L
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can be effectively solved by both frameworks, with SGAN achieving superior results due to its ability to model
complex feature dependencies.

In future work, we have significant interest in developing robust defense mechanisms against these
sophisticated adversarial attacks. This includes:

1. Adversarial Training: Incorporating adversarial examples into the training set:
min Eqy~p max L(f(x + &), ) “41
I f sllo=e
2. Certified Robustness: Developing provable defenses using randomized smoothing:
g(x) = arg max Ps-no.o2I)(f(x + 8) = ¢) (42)
ceEY
3. Ensemble-Based Detection: Combining multiple IDS architectures to improve resilience against transfer
attacks.
4, Adversarial Detection: Developing mechanisms to identify GAN-manipulated traffic using statistical
fingerprinting and feature-space analysis.
5. Transferability Analysis: Examining the transferability of adversarial samples across different IDS
architectures:
Transfer Rate = P(furged(Xad) Ay | Frource(Xadu) /= ) 43) to

inform universal defense strategies.
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