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Abstract 
Pakistan’s transport sector faces mounting sustainability challenges due to 
rapid motorization and a freight system dominated by aging, diesel-powered 
road vehicles. Although motorcycles account for more than 80% of the 
national vehicle fleet, heavy-duty freight vehicles contribute nearly 60% of 
transport-sector CO₂ emissions, indicating a fundamental structural 
inefficiency. This study presents a hybrid predictive analytics framework 
combining an ARIMA-based time-series model with machine learning 
techniques to forecast transport emissions and evaluate road-to-rail freight 
modal shift scenarios. Using national fleet composition, fuel consumption, and 
emissions data for financial year 2023–24, ARIMA is employed to establish a 
business-as-usual emissions trajectory, while supervised machine learning 
models capture nonlinear relationships between freight activity, fuel use, and 
modal share. Multiple modal shift scenarios are simulated to quantify the 
emissions and energy impacts of increased rail freight penetration. The results 
demonstrate that even moderate shifts from road to rail can yield substantial 
reductions in carbon emissions and fuel demand. The proposed AI-assisted 
framework provides a data-driven decision-support tool for transport policy 
planning, supporting climate-resilient and energy-efficient freight systems in 
emerging economies.  
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1. Introduction 
The global transport sector stands at a critical 
juncture, functioning as both a vital artery for 
economic development and a primary driver of 
environmental degradation. Globally, 
transportation accounts for approximately one-
quarter of total CO₂ emissions [1, 2], with road 
transport alone responsible for the vast majority 
of these greenhouse gases (GHG) [2, 3]. This 
sector is widely classified as "hard to abate" due 
to its heavy reliance on fossil fuels and complex 
logistical constraints. In the specific context of 

Pakistan, these challenges are exacerbated by 
rapid motorization and a fundamental 
structural inefficiency: while motorcycles and 
small vehicles constitute over 80% of the 
national fleet, the freight sector dominated by 
aging, diesel powered heavy duty vehicles 
contributes nearly 60% of transport sector CO₂ 
emissions . This imbalance is compounded by a 
logistics network that has historically 
underperformed, as evidenced by Pakistan’s low 
ranking and subsequent exclusion from recent 
World Bank Logistics Performance Indices [4]. 
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To mitigate this environmental burden, the 
"Avoid Shift Improve" (ASI) framework 
identifies modal shift specifically moving freight 
from road to rail as a pivotal decarbonization 
strategy [5]. Rail transport offers substantially 
superior carbon cost efficiency compared to 
road haulage, particularly for long-distance and 
bulk freight [6]. Research indicates that rail 
freight is significantly less carbon intensive, 

with some studies suggesting rail emits up to 
80% less CO₂ than road transport [7] and 
requires approximately half the energy for 
comparable freight work [8]. Furthermore, 
shifting to rail alleviates road congestion and 
reduces infrastructure maintenance costs, which 
are substantial given that logistical bottlenecks 
in Pakistan are estimated to cost the economy 
between 4% and 6% of GDP annually [4, 9, 10] 

.

 
Methodological Framework: The Rationale for a Hybrid ARIMA-ML Approach 

 
Navigating this transition requires robust 
decision-support tools. This study employs a 
hybrid predictive analytics framework 
combining an Autoregressive Integrated Moving 
Average (ARIMA) model with supervised 
machine learning. The selection of ARIMA as 
the foundational baseline is deliberate and 
addresses specific modeling requirements that 
other techniques cannot meet in isolation. 
 
1.1 Why ARIMA? (Establishing the Baseline): 
ARIMA is a standard statistical tool for 
analyzing time-series data, particularly effective 
when the series follows linear trends [11-13]. It 
decomposes data into autoregressive, 
integrated, and moving average components to 
project future points based on historical 
patterns [14]. In the context of this study, 
ARIMA is utilized to establish a "business as 
usual" (BAU) emissions trajectory . It is favored 
for its simplicity, statistical efficiency on smaller 

datasets, and interpretability [15]. Recent 
studies have successfully used ARIMA to 
forecast transitions in energy sectors, such as 
the phase-out of fossil fuels [16]. Given that 
Pakistan’s historical transport data is often 
limited to annual observations rather than 
high-frequency big data, ARIMA minimizes the 
risk of overfitting that can occur with more 
complex models . 
 
1.2 Why Not Deep Learning Alone? (The 

Limitation of LSTM): 
While Deep Learning models like Long Short 
Term Memory (LSTM) networks are powerful 
for capturing long term dependencies and non-
linear patterns [17], they possess significant 
limitations for this specific application. LSTM 
models are "data-hungry," typically requiring 
new data to improve accuracy with attention 
mechanism and also massive datasets to train 
effectively without overfitting [18, 19] . In 
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developing economies where freight activity 
data can be scarce or fragmented [20], relying 
solely on LSTM can lead to unreliable 
predictions. Furthermore, deep learning models 
often function as "black boxes," making it 
difficult for policymakers to interpret the 
specific drivers of a forecast , whereas ARIMA 
offers parametric transparency regarding trends 
and shocks . 
 
1.3 The Hybrid Innovation: 
To address the limitations of ARIMA regarding 
non-linearity, this study integrates supervised 
machine learning. While ARIMA captures the 
linear "momentum" of emissions growth, it 
often struggles with complex, non-linear 
interactions such as sudden fuel price shocks or 
policy interventions [21]. By feeding the 
residuals of the ARIMA model into machine 
learning algorithms, the hybrid framework 
captures both the linear baseline and the non-
linear variations caused by external economic 
factors [22]. 

 
1.4 Research Novelty and Contribution 
The primary innovation of this study lies in 
applying this hybrid analytics framework to the 
specific, data-scarce context of an emerging 
economy. The majority of existing research on 
freight decarbonization focuses on developed 
regions like the European Union, the United 
States, or China [23, 24] , where data 
availability allows for different modeling 
approaches. There is a distinct lack of 
frameworks specifically designed to simulate 
road to rail shifts in environments dominated 
by unregulated, aging diesel fleets . 
By utilizing national fleet composition and fuel 
consumption data for the financial year 2023–
24, this study fills a critical gap. Unlike static 
discrete choice models that analyze individual 
shipper behavior [25], this framework generates 
longitudinal national forecasts. It quantifies the 
emissions and energy impacts of specific modal 
shift scenarios, such as the Pakistan Vision 
2025 goal of increasing rail freight share from 
4% to 20% [24]. The resulting AI-assisted tool 
provides data-driven evidence for policymakers, 
demonstrating that even moderate shifts to rail 
can yield substantial decarbonization, thereby 
supporting climate-resilient infrastructure 
planning. 

ARIMA-based national CO₂ forecast was 
combined with a road-transport modal 
structure to evaluate the potential impact of 
road-to-rail modal shift scenarios. Freight 
transport was identified as the primary 
candidate for rail substitution. Moderate (20%) 
and aggressive (40%) freight rail-shift scenarios 
were simulated using emission-factor 
differentials between road and rail transport, 
revealing substantial long-term CO₂ reduction 
potential 
 
2. Methodology 
2.1   Research Design and Workflow 
This study develops a hybrid forecasting–
scenario evaluation framework to quantify 
Pakistan’s transport-sector CO₂ emissions 
under a Business-as-Usual (BAU) trajectory and 
under road-to-rail freight modal shift pathways. 
The method integrates: (i) statistical time-series 
forecasting using ARIMA to produce an 
interpretable baseline; (ii) supervised machine 
learning to model non-linear variations by 
learning from ARIMA residuals; and (iii) 
scenario-based policy analysis to estimate 
emissions reductions for alternative rail-share 
targets. 
 
2.2   Data Sources and Preparation 
National-level transport and energy statistics for 
the year 2023–24 and earlier historical years 
were compiled, including total road transport 
activity before suitable proxies such as fuel 
consumption, fleet composition by vehicle 
class, and fuel-wise consumption (diesel/petrol) 
where available. In parallel, rail freight activity 
indicators (e.g., ton-km, traction fuel/electricity 
use, or published rail emission factors) were 
collected to quantify road–rail emissions 
differentials and support modal shift scenario 
design. As illustrated in Figure 1, the study 
workflow begins with a Data Input stage, 
integrating the national CO₂ time series and 
road fleet structure with road and rail emission 
factors, followed by Preprocessing steps that 
include sorting by year, imputing missing 
values, and selecting the target emissions series. 
The processed dataset is then used for 
Statistical Forecasting, where stationarity 
diagnostics (ADF test) guide differencing and 
ARIMA order selection (p, d, q) using 
information criteria, producing a baseline 
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emissions trajectory with uncertainty bounds. 
Subsequently, the framework performs 
Transport Emissions Allocation to estimate the 
road transport share of national CO₂ emissions 
and isolate the freight-related component as the 
primary candidate for intervention. Building 
on this decomposition, Policy Analysis 
implements road-to-rail freight shift scenarios, 
and the Emission Reduction Module computes 
scenario-based reductions using road–rail 
emission factor differentials, producing a 
revised CO₂ trajectory under each modal shift 

assumption. Finally, the framework outputs 
Evaluation metrics, including scenario 
trajectories and annual CO₂ reductions 
(MtCO₂), enabling quantitative comparison of 
business-as-usual and road-to-rail transition 
pathways. Throughout the process, data were 
harmonized to a consistent annual time step 
and converted to CO₂ emissions using standard 
fuel-to-CO₂ conversion factors (or nationally 
adopted emission factors), while variables were 
normalized or scaled where required for 
machine learning. 

 
Figure 1. AI-Assisted Road-to-Rail Freight Modal Shift Forecasting Flow diagram 

 
2.3 Baseline Emissions Estimation 
Annual CO₂ emissions for the historical period 
were estimated as: 

t t , f ff
E ( FC EF )=   (1) 

where FCt,f is fuel consumption for fuel type f 
in year t, and EFf is the corresponding emission 
factor. If fuel consumption was unavailable, 
emissions were estimated using activity-based 
factors (e.g., vehicle-km or ton-km) with class-
specific emission factors. 
 
 

4. ARIMA Modeling for BAU Forecast 
To generate a transparent BAU forecast, an 
ARIMA (p,d,q) model was fitted to the 
historical emissions time series Et. The series 
was tested for stationarity (e.g., ADF test) and 
differenced until stationary (d). Model orders 
(p,q) were selected using information criteria 
(AIC/BIC) and residual diagnostics. The 
finalized ARIMA model produced the baseline 
forecast ARIMA

tE


 over the policy horizon. 
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5. Hybrid ARIMA–Machine Learning 
Residual Learning 
Because ARIMA captures primarily linear 
structure, a supervised ML model was trained 
to predict ARIMA residuals: 

ARIMA

t t tr E E= −


     (2) 

Explanatory variables (where available) included 
macro and transport drivers such as fuel price 
indices, freight demand proxies, 
GDP/industrial output proxies, and fleet 
composition indicators. Multiple algorithms 
(e.g., Random Forest, Gradient Boosting, SVR) 
can be evaluated; the final model is selected 
based on validation performance. 
The hybrid forecast is then computed as: 

Hybrid ARIMA ML

t t tE E r= +
 

   (3) 

This preserves ARIMA interpretability while 
incorporating non-linear corrections. 
 
6. Scenario Modeling: Road-to-Rail Freight 
Modal Shift 
Two policy scenarios were simulated relative to 
BAU: 

• Moderate shift: 20% of freight activity 
shifted from road to rail 

• Aggressive shift: 40% of freight activity 
shifted from road to rail 

Let SSS be the shifted share (0.20 or 0.40). 
Emissions under a modal-shift scenario are 
computed using emission-factor differentials: 
 

Scenario iHybr d

t t tE E E= −


 (4) 

r

Freigh

a

t

t t ro d ailE S A ( EF EF ) =   −  (5) 

where Freight

tA  is freight activity (e.g., ton-km) 

or an equivalent scaling proxy derived from 
national freight fuel use. If the dataset provides 
only aggregate emissions, the freight-related 
portion is estimated from the road modal 

structure (diesel freight share and heavy-duty 
contribution), then adjusted using the road–rail 
emission factor difference. Scenario outputs 
include annual CO₂ reductions and cumulative 
savings over the forecast horizon. 
 
 
7. Model Evaluation and Validation 
The models were evaluated using out-of-sample 
testing (rolling-origin or hold-out split) and 
error metrics such as MAE, RMSE, and MAPE. 
Residual diagnostics (autocorrelation checks 
and normality inspection) were performed to 
ensure ARIMA adequacy, while ML models 
were assessed for overfitting using cross-
validation and hyperparameter tuning. 
 
8. Outputs and Policy Indicators 
The framework reports: (i) BAU emissions 
forecast; (ii) hybrid forecast improvement 
relative to ARIMA-only; (iii) emissions 
trajectories under 20% and 40% rail-shift 
scenarios; and (iv) cumulative CO₂ savings and 
percentage reductions. These outputs provide 
an evidence base to support modal-shift 
planning, investment prioritization, and climate 
policy assessment. 
The proposed AREMA model estimates 
transport-sector CO2 emissions by integrating 
macro and transport drivers, road and rail 
emission factors, freight activity, and a defined 
shift scenario. The workflow begins with 
preprocessing, where the time-series data are 
prepared using stationarity checks, differencing, 
and model selection criteria such as AIC and 
BIC. A baseline “business-as-usual” ARIMA 
model is then developed to generate the initial 
emissions forecast and extract residual errors. In 
parallel, a hybrid residual learning module 
trains a machine-learning model using the same 
drivers to learn and predict these residual 
errors.  

The final hybrid forecast is obtained by 
combining the baseline ARIMA forecast with 
the predicted residual correction. After 
forecasting, scenario modeling is applied to 
evaluate road-to-rail freight shifting under 
moderate and aggressive shift assumptions, 
producing scenario-based emissions projections. 
The model outputs include emissions 
trajectories over time, estimated emissions 

reductions and cumulative savings, percentage 
reduction, and overall model performance 
indicators, as shown in Figure 2.  
 
3. Result and Discussion  
3.1  Provincial Fleet Distribution and Dataset 

Overview 
This study first summarizes the registered road-
transport fleet across four provinces of Pakistan 
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(Sindh, Punjab, KPK, and Balochistan) using 
the compiled provincial counts reported by 
NTRC. The dataset covers 15 vehicle categories 
plus a reported total row. After cleaning the 
entries (removal of commas, blank spaces, and 
dash symbols used for missing values), the 
combined fleet size across all provinces equals 
7,514,155 vehicles. 
The provincial distribution shows a strong 
spatial concentration. Sindh accounts for 
4,116,292 vehicles (54.78%) of the national 
fleet, followed by Punjab with 1,684,253 
(22.41%), KPK with 1,271,082 (16.92%), and 
Balochistan with 442,528 (5.89%). This 
indicates a clear dominance of Sindh in terms 
of total registered vehicles, which has important 
implications for transport-driven emissions 
concentration. 
 
3.2   National Fleet Composition and 

Dominant Categories 
Across Pakistan, fleet composition is heavily 
dominated by motorcycles and scooters, 
totaling 4,803,871 vehicles (63.93%) of the 
national stock. Trucks represent the second 
largest category with 1,154,634 vehicles 
(15.37%), followed by motor cars at 526,744 
(7.01%). 
Secondary contributors include pickups 
(2.95%), tractors (2.50%), and motor rickshaws 
(1.90%), while all other categories contribute 
less than two percent individually. These results 
confirm that Pakistan’s transport system is 
structurally two-wheeler intensive in terms of 
count, but heavy vehicles form the second 
largest operational block. This dual structure is 
highly relevant for emissions modeling, as heavy 
vehicles contribute disproportionately to CO₂ 
despite lower numerical representation. 
 
3.3   Freight-Oriented Vehicle Stock 
To isolate the logistics-relevant component of 
the fleet, freight-oriented categories trucks, 
pickups, delivery vans, oil tankers, and water 
tankers were aggregated. The total freight-

oriented stock equals 1,550,493 vehicles, 
representing 20.63% of the national fleet. 
Thus, approximately one-fifth of registered 
vehicles are directly linked to goods movement. 
This justifies the later modeling focus on freight 
activity as a major driver of transport-related 
CO₂ emissions and scenario-based road-to-rail 
shift analysis. 
 
3.4   Provincial Structural Differences 
Although motorcycles dominate nationally, 
provincial compositions differ significantly. 
Sindh shows a freight-heavy structure, with 
trucks accounting for 26.35%. Punjab is highly 
two-wheeler centric (86.45% motorcycles). KPK 
displays a mixed structure, with notable shares 
of motor cars (12.33%), rickshaws (5.22%), and 
trucks (4.62%). Balochistan exhibits higher 
shares of tractors (17.14%) and tanker vehicles, 
consistent with agricultural and long-haul 
transport patterns. These structural variations 
imply regionally differentiated emission 
intensities and freight dynamics. 
Data Consistency Verification, where validation 
check was conducted by summing all vehicle 
categories within each province and comparing 
the result to the reported total. The sums 
matched exactly for Sindh, Punjab, and 
Balochistan. However, for KPK, the reported 
total was 1,280,082, while the internally 
summed categories equaled 1,271,082 
producing a discrepancy of 9,000 vehicles. For 
transparency and reproducibility, all subsequent 
shares and national totals use the internally 
consistent category-wise sum. 
 
3.5 Historical CO₂ Emissions 
Pakistan’s transport-related CO₂ emissions 
exhibit a clear long-term upward trend from 
1947 onward, with accelerated growth after the 
1980s and sharp increases during 2005–2021, 
followed by a recent decline. This historical 
trajectory is illustrated in Figure 3, which shows 
the full emissions time series used for ARIMA 
modeling. 
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Figure 3. Integrated CO2 Emissions and Contributed Share of Vehicles in Pakistan 

 
3.6 ARIMA Model Identification and 

Training Performance 
3.6.1 Stationarity Assessment and 
Differencing Strategy 
Prior to model estimation, the CO₂ emissions 
time series was examined for stationarity. Visual 
inspection of the historical trend (Figure 3) 
indicates a strong long-term upward trajectory 
with structural shifts after 2005 and volatility 
post-2018. Such behavior suggests non-
stationarity in mean. 
Preliminary differencing tests indicated that: 
No differencing (d = 0) leaves strong trend 
persistence. 
First differencing (d = 1) reduces trend but 
residual autocorrelation remains. 
Second differencing (d = 2) produces a more 
stable mean structure. 
 
3.6.2 Hyperparameter Setting 
The hyperparameter setting is used to optimize 
the performance of the model and to ensure 
systematic and unbiased model identification, a 
full grid search was conducted across 
autoregressive orders (p = 0–2), differencing 
orders (d = 0–2), and moving average orders (q 
= 0–3), resulting in 36 candidate ARIMA 
specifications. This search space was designed 
to balance model flexibility with parsimony, 

avoiding excessive parameterization while still 
capturing potential autocorrelation and trend 
structures in the emissions series. Given the 
clearly trending nature of Pakistan’s CO₂ 
emissions, differencing orders up to d = 2 were 
considered to address potential non-
stationarity. Models were evaluated using both 
information-theoretic and predictive accuracy 
metrics. The Akaike Information Criterion 
(AIC) was employed to assess model fit while 
penalizing complexity, ensuring that lower AIC 
values reflect better trade-offs between 
goodness-of-fit and overfitting risk. 
The hyperparameter setting of the proposed 
model is shown in Table 1 which present the 
informative optimized setting of the model with 
detailed description that confirm the model 
adequacy. Rigorously to evaluate model 
performance, Root Mean Square Error (RMSE), 
Mean Absolute Percentage Error (MAPE), and 
the Akaike Information Criterion (AIC) are 
employed, as they provide complementary 
insights into accuracy and model adequacy. 
RMSE penalizes large prediction errors and is 
particularly effective for assessing overall 
forecasting precision, while MAPE offers an 
intuitive, scale-independent measure of relative 
error that facilitates comparison across datasets 
and scenarios. AIC further accounts for the 
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trade-off between goodness of fit and model 
complexity, discouraging overfitting by favoring 
parsimonious models with strong explanatory 
power. Together, these metrics ensure a 

comprehensive and reliable assessment of 
predictive accuracy, robustness, and 
generalizability.

 
Table 1. ARIMA Model Hyperparameter Setting 
Component Setting Description 

Autoregressive order (p) 0 – 2 
Captures dependence on up to two lagged 
observations 

Differencing order (d) 0 – 2 
Accounts for trend and non-stationarity (none, 
first, or second differencing) 

Moving Average order (q) 0 – 3 Captures up to three lagged error terms 

Total candidate models 36 
Full grid search across p, d, q ranges  (36 
Combinations) 

Data split strategy 80–10–10 Chronological split (no shuffling) 
Training period 1947–2009 Used for parameter estimation 

Validation period 2010–2017 
Used for model comparison and hyperparameter 
selection 

Test period 2018–2025 Used for out-of-sample performance evaluation 
Model selection criteria AIC Penalized likelihood criterion for model parsimony 
Validation metric RMSE Measures average magnitude of forecast error 
Test metric RMSE Assesses generalization performance 
Additional accuracy metric MAPE Relative percentage error measure 
 
For predictive evaluation, a chronological 80–
10–10 split was implemented to preserve 
temporal causality. The training set (1947–
2009) was used for parameter estimation. The 
validation set (2010–2017) guided 
hyperparameter selection, while the final test 
set (2018–2025) provided an unbiased out-of-
sample performance assessment. Root Mean 
Square Error (RMSE) was used as the primary 
accuracy metric due to its sensitivity to larger 
errors, which is important for emissions 
forecasting. Mean Absolute Percentage Error 
(MAPE) was additionally computed to provide 
scale-independent interpretability. This 
structured evaluation framework ensures 
reproducibility, prevents data leakage, and 
allows robust comparison of ARIMA 
specifications before selecting the final model. 
 
3.6.3 Training Performance Illustration 
Figure 4 presents the in-sample training 
performance of the selected ARIMA (0,2,1) 
model applied to Pakistan’s annual CO₂ 
emissions during the training period (1947–
2009). The blue curve represents the observed 
emissions, while the orange curve shows the 
fitted values generated by the model. Overall, 

the ARIMA (0,2,1) specification demonstrates 
strong alignment with the historical emissions 
trajectory. The model successfully captures the 
gradual growth phase observed between the 
1950s and late 1970s, the moderate acceleration 
during the 1980s and 1990s, and the more 
pronounced upward expansion in the early 
2000s. The fitted series closely follows the 
curvature of the observed data, indicating that 
second-order differencing effectively removes 
the strong deterministic trend present in the 
raw emissions series. 
The slight instability observed at the beginning 
of the series (negative spike near the first 
observation) is a known boundary effect 
associated with second differencing, where 
initial lagged values are limited. This artifact 
does not affect overall model adequacy and 
diminishes quickly as the time series progresses. 
Importantly, no systematic overestimation or 
underestimation is observed across the training 
window. Deviations between fitted and actual 
values appear small and randomly distributed 
rather than trend-driven, suggesting that the 
residuals are approximately white-noise during 
the in-sample period. This indicates that the 
ARIMA (0,2,1) model adequately captures both 
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long-term structural behavior and short-run 
fluctuations in emissions. The strong in-sample 
fit, combined with superior validation and test 
performance (as shown in Table 2), supports 

the selection of ARIMA (0,2,1) as the final 
forecasting model for subsequent scenario and 
out-of-sample analysis. 

 
Figure 4. Training performance of the selected ARIMA (0,2,1) model for Pakistan’s CO₂ emissions 
 
3.6.4 Selected Model Performance 
Multiple ARIMA specifications were evaluated 
using an 80–10–10 chronological split into 
training, validation, and test sets, and model 
performance was compared using AIC along 
with forecast accuracy metrics including RMSE 
and MAPE. Based on the combined evidence 
of strong validation accuracy and parsimonious 
structure, ARIMA (0,2,1) was selected as the 
primary baseline model. Its out-of-sample 
performance, presented in Figure 2 and 
summarized in Figure 5, shows that the model 
captures the curvature of Pakistan’s long-term 
CO₂ emissions trajectory while avoiding the 
excessive divergence observed in lower-
differencing alternatives. The second-order 

differencing effectively addresses the 
pronounced non-stationarity in the series, 
leading to stable forecasts that follow the overall 
direction of observed emissions across the 
validation and test horizons. Importantly, the 
95 percent confidence interval expands 
gradually rather than explosively, indicating 
controlled uncertainty propagation, and most 
observed validation and test values remain 
within these bounds despite short-term 
volatility. Overall, the ARIMA (0,2,1) model 
provides a statistically sound and interpretable 
baseline that balances trend representation, 
uncertainty control, and predictive accuracy, 
making it suitable for subsequent scenario-
based emissions analysis. 
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Figure 5. ARIMA Model Performance with 95% Confidence Interval 

 
3.7   ARIMA Model Comparison 
A comprehensive ARIMA model comparison 
was conducted using a full grid search over 
autoregressive orders from zero to two, 
differencing orders from zero to two, and 
moving-average orders from zero to three, 
resulting in thirty-six candidate specifications 
evaluated under an eighty–ten–ten 
chronological split into training, validation, and 
test sets. Each model was assessed using an 
information criterion for parsimony together 
with forecast accuracy metrics on the validation 
and test horizons. Across the full search space, 
models incorporating second-order differencing 
consistently achieved superior performance, 
confirming strong non-stationarity in Pakistan’s 
CO₂ emissions series. Among all candidates, 
ARIMA (0,2,1) provided the best overall trade-
off between accuracy and simplicity, delivering 
the lowest validation error with stable out-of-
sample behavior, while more complex 

alternatives such as ARIMA (2,2,3) offered only 
marginal gains in fit at the cost of additional 
parameters. Therefore, ARIMA (0,2,1) was 
selected as the primary baseline model for 
subsequent forecasting and scenario-based 
emissions analysis. Figure 6 compares out-of-
sample forecasts from multiple ARIMA 
specifications against the observed CO₂ series. 
The competing models produce noticeably 
different post-2010 trajectories: several over-
project rapid growth (clear overshoot after 
2020), while others under-react and remain too 
flat. The highlighted ARIMA (0,2,1) provides 
the best trade-off—its forecast follows the overall 
direction and curvature of recent emissions 
without excessive divergence. The 95% 
confidence band widens gradually with the 
forecast horizon, indicating controlled 
uncertainty growth and supporting the model’s 
stability for medium-term projections. 
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Figure 6. ARIMA best Model Comparison with various Combination 

 
Furthermore; the Table. 2 provides a 
comparative evaluation of eighteen ARIMA 
specifications using the Akaike Information 
Criterion (AIC) together with validation and 
test accuracy indicators (RMSE and MAPE). 
The undifferenced baseline family ARIMA 
(0,0,q) performs poorest, with extremely large 
errors (validation RMSE above 100 and test 
RMSE around 163–167), confirming that the 
emissions series is strongly non-stationary and 
cannot be modeled without differencing. 
Introducing autoregressive and moving-average 
structure without differencing improves results 
but remains inadequate: ARIMA (1,0,1) still 

shows high forecast errors (validation RMSE 
29.52; test RMSE 59.50), indicating that trend 
persistence and structural evolution are not 
handled properly when d is zero. First-
difference models provide partial improvement 
in validation accuracy (ARIMA (0,1,0–2) yields 
validation RMSE in the 23.49–26.63 range 
with relatively low validation MAPE near 6–8 
percent), yet they generalize poorly, as reflected 
by large test errors (test RMSE above 61 and 
MAPE above 27 percent), demonstrating that 
single differencing is insufficient to stabilize the 
series for reliable out-of-sample forecasting.  

 
Table 2. ARIMA Model Comparison 

Model 
Akaike 
Information 
Criterion(AIC) 

Validation Test 
RMSE MAPE (%) RMSE MAPE (%) 

ARIMA(0,0,0) 652.11 117.41 69.53 166.56 76.87 
ARIMA(0,0,1) 570.38 112.46 65.33 165.51 76.37 
ARIMA(0,0,2) 502.48 105.06 57.70 163.61 75.48 
ARIMA(0,0,3) 455.89 102.09 55.62 162.86 75.13 
ARIMA(1,0,1) 302.41 29.52 16.10 59.50 23.61 
ARIMA(2,0,1) 309.17 23.20 13.09 31.78 11.84 
ARIMA(1,0,3) 296.64 21.68 12.19 39.18 14.23 
ARIMA(2,0,2) 306.02 25.29 14.24 38.08 14.10 
ARIMA(0,1,0) 345.94 23.71 6.21 61.94 27.38 
ARIMA(0,1,1) 334.20 23.49 6.33 61.38 27.11 
ARIMA(0,1,2) 317.82 26.63 7.86 67.76 30.18 
ARIMA(2,1,2) 298.27 27.45 15.01 54.47 21.03 
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Model 
Akaike 
Information 
Criterion(AIC) 

Validation Test 
RMSE MAPE (%) RMSE MAPE (%) 

ARIMA(0,2,0) 339.72 22.55 6.30 57.56 25.20 
ARIMA(0,2,2) 293.59 21.31 12.06 23.22 9.11 
ARIMA(0,2,3) 290.92 19.37 10.55 22.55 9.39 
ARIMA(2,2,2) 296.64 20.28 11.27 22.69 9.25 
ARIMA(2,2,3) 294.31 20.73 11.64 22.86 9.18 
ARIMA(0,2,1) 290.71 19.25 10.24 22.18 9.25 
 
In contrast, models with second-order 
differencing consistently outperform all other 
families, producing the lowest validation and 
test errors and confirming that higher-order 
non-stationarity dominates the emissions 
dynamics. Within this competitive d equals two 
group, ARIMA (0,2,3) attains the lowest AIC 
(290.92) and strong accuracy (validation RMSE 
19.37; test RMSE 22.55), while ARIMA (0,2,2), 
ARIMA (2,2,2), and ARIMA (2,2,3) show 
closely comparable performance with only 
marginal differences in RMSE and MAPE. 
Notably, ARIMA (0,2,1) achieves the best 
overall balance of fit and forecast accuracy (AIC 
290.71; validation RMSE 19.25; validation 
MAPE 10.24 percent; test RMSE 22.18; test 
MAPE 9.25 percent), indicating a parsimonious 
yet robust structure. Overall, the results 
demonstrate that second differencing is 
essential for capturing the underlying emissions 
trend behavior, and the leading d equals two 
models deliver stable and accurate medium-

term forecasts suitable for subsequent scenario 
analysis. 
 
3.8   Road-to-Rail Modal Shift Scenarios and 

Emissions Impact 
The ARIMA (0,2,1) model (selected in the 
forecasting section) provides the business-as-
usual baseline projection of Pakistan’s 
transport-related CO₂ emissions (mean forecast 
with 95% prediction interval). The road-to-rail 
scenarios were then implemented as a policy 
overlay on this ARIMA baseline by 
proportionally reducing the baseline emissions 
to reflect shifting freight activity from road to 
rail. Using the study’s working assumptions 
road-freight share of transport CO₂ = 60% and 
rail freight emitting about nine times less CO₂ 
per tonne-km than road freight as shown in 
Table 3, the implied system-level reductions 
equal 10.7% for a 20% shift and 21.3% for a 
40% shift, applied consistently to the ARIMA 
mean forecast and its 95% bounds. 

 
Table 3. ARIMA baseline forecast and emissions under road-to-rail shift scenarios 

Year 
Baseline ARIMA mean 
[95% PI] 

20% 
shift 
mean 

20% reduction 40% shift mean 40% reduction 

2026 199.74 [185.03–214.45] 178.44 21.31 (10.7%) 157.13 42.61 (21.3%) 
2030 199.89 [155.53–244.24] 178.56 21.32 (10.7%) 157.24 42.64 (21.3%) 
2035 199.89 [135.79–263.98] 178.56 21.32 (10.7%) 157.24 42.64 (21.3%) 
2040 199.89 [120.84–278.93] 178.56 21.32 (10.7%) 157.24 42.64 (21.3%) 
2045 199.89 [108.30–291.47] 178.56 21.32 (10.7%) 157.24 42.64 (21.3%) 
2050 199.89 [97.28–302.49] 178.56 21.32 (10.7%) 157.24 42.64 (21.3%) 

 
Building on the selected ARIMA (0,2,1) 
baseline, the road-to-rail scenarios indicate 
substantial emissions abatement relative to the 
business-as-usual trajectory. Under the 20% 
modal shift, the projected CO₂ level decreases 
by 10.7%, corresponding to approximately 21.3 
MtCO₂ per year across the forecast horizon 

(e.g., 2026 baseline 199.74 MtCO₂ reduced to 
178.44 MtCO₂). Under the more aggressive 
40% shift, emissions decrease by 21.3%, 
equivalent to roughly 42.6 MtCO₂ per year 
(e.g., 2026 reduced to 157.13 MtCO₂). While 
the ARIMA mean forecast remains near 200 
MtCO₂, the 95% prediction interval widens 
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with time, implying that the absolute abatement 
also varies with uncertainty; for example, by 
2050 the implied reduction ranges from about 
10.4 to 32.3 MtCO₂ for the 20% case and 20.8 
to 64.5 MtCO₂ for the 40% case when 
propagating the baseline interval bounds. 
Overall, the scenario overlay shows that shifting 
freight from road to rail can deliver material 
and scalable CO₂ reductions, with the 40% 
scenario providing approximately double the 
abatement of the 20% case, conditional on 
achieving the assumed modal shift in freight 
activity. 
 
3.9   Discussion  
This study presents an integrated, data-driven 
assessment of Pakistan’s road-transport 
structure and long-run transport-related CO₂ 
trajectory by combining provincial fleet 
statistics, time-series forecasting, and modal-
shift scenario analysis. The fleet results reveal a 
highly uneven provincial distribution, with the 
largest concentration in Sindh and 
comparatively smaller shares in Punjab, Khyber 
Pakhtunkhwa, and Balochistan. Nationally, 
motorcycles dominate the vehicle stock, while 
trucks form the most significant heavy-vehicle 
block, which is important because heavy-duty 
freight vehicles typically contribute 
disproportionately to fuel consumption and 
emissions relative to their counts. These 
structural findings motivate the modeling 
strategy adopted in this work: establishing a 
robust baseline CO₂ projection from historical 
emissions dynamics and then evaluating policy 
overlays that target freight activity. From a 
forecasting perspective, the historical emissions 
series exhibits strong non-stationarity and 
changing growth regimes; the ARIMA grid 
search confirms that undifferenced and first-
difference models generalize poorly, whereas 
second-difference specifications consistently 
achieve lower validation and test errors. 
Accordingly, ARIMA (0,2,1) was selected as a 
parsimonious baseline model with stable out-of-
sample behavior, controlled uncertainty growth, 
and prediction bounds that capture most 
validation and test observations, making it 
suitable as a statistical benchmark for scenario 
comparison rather than a causal representation 
of underlying drivers. 

Building on this ARIMA baseline, the road-to-
rail modal shift scenarios translate projected 
emissions into policy-relevant abatement 
estimates using transparent emissions 
accounting assumptions. Under the adopted 
design, shifting 20 percent of road-freight 
activity to rail yields an estimated reduction of 
about 10.7 percent of transport CO₂, while a 
40 percent shift yields about 21.3 percent 
reduction, approximately doubling the 
abatement as expected under proportional 
scaling. In addition to emissions reduction, the 
scenarios imply co-benefits such as reduced 
highway congestion from heavy vehicles, lower 
pavement damage, improved safety, and 
potential reductions in local pollutants along 
freight corridors; however, feasibility differs 
substantially between scenarios. A 20 percent 
shift is more realistic in the near to medium 
term with targeted terminal upgrades, improved 
service reliability, and intermodal integration, 
whereas a 40 percent shift typically requires 
major capacity expansion (rolling stock, track 
throughput, terminal handling), operational 
reforms (dispatching priority, scheduling, 
reliability standards), and strong last-mile 
logistics to avoid bottlenecks. Key limitations 
include the univariate nature of ARIMA (lack 
of explicit causal drivers), the use of aggregate 
transport emissions without direct passenger–
freight separation, and potential variability in 
rail-to-road emission intensity by corridor and 
operating conditions; future work should 
therefore incorporate exogenous drivers via 
ARIMAX-type models, adopt bottom-up 
activity-based emissions accounting in tonne-
km, and expand the scenario set to include rail 
electrification, trucking efficiency 
improvements, logistics optimization, and 
vehicle electrification pathways. 
 
4. Conclusion 
This study combined provincial vehicle fleet 
statistics with time-series forecasting to 
characterize Pakistan’s transport structure and 
project transport-related CO₂ emissions. The 
descriptive results indicate strong provincial 
concentration of registered vehicles and a 
national fleet dominated by motorcycles, while 
trucks represent the most significant heavy-
vehicle block, supporting the emphasis on 
freight activity in emissions mitigation analysis. 
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For forecasting, a systematic ARIMA grid search 
under an 80–10–10 split confirmed 
pronounced non-stationarity in the historical 
emissions series, with second-difference 
specifications consistently outperforming 
undifferenced and first-difference alternatives. 
Based on forecast accuracy and model 
parsimony, ARIMA (0,2,1) was selected as a 
robust baseline model, providing stable out-of-
sample behavior with controlled uncertainty 
growth. Scenario overlays further suggest that 
shifting freight from road to rail can deliver 
meaningful abatement relative to the baseline, 
with the 40 percent modal-shift case achieving 
substantially greater reductions than the 20 
percent case, conditional on rail capacity 
expansion, terminal readiness, and service 
reliability. Future work should strengthen both 
the predictive realism and policy fidelity of the 
framework. First, the baseline model can be 
extended from a univariate ARIMA to 
multivariate forecasting (e.g., ARIMAX or 
related models) by incorporating exogenous 
drivers such as freight activity proxies, fuel 
consumption, GDP, fuel prices, and policy 
shocks to better handle structural changes. 
Second, the scenario module should be 
upgraded from proportional reductions to a 
bottom-up activity-based approach that links 
vehicle stock, utilization (vehicle-km/ton-km), 
and emission factors, enabling corridor-specific 
road-to-rail shifts and technology pathways (e.g., 
rail electrification, cleaner trucking standards). 
Third, uncertainty analysis can be expanded 
through sensitivity testing of key parameters 
(freight share, rail-to-road emission intensity 
ratio, achievable shift levels) to provide robust 
ranges for decision-makers. Finally, integrating 
richer datasets (freight tonnage, logistics flows, 
rail throughput constraints, and disaggregated 
passenger vs freight emissions) will improve 
interpretability and support implementation-
oriented decarbonization planning. 
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