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Abstract

Keywords
Road-torail shift; CO» emissions; Pakistan’s transport sector faces mounting sustainability challenges due to
ARIMA  forecastingg machine rapid motorization and a freight system dominated by aging, diesel-powered
road wehicles. Although motorcycles account for more than 80% of the
national wvehicle fleet, heavy-duty freight wvehicles contribute nearly 60% of
transportsector  CO, emissions, indicating a fundamental structural

learning; sustainable transport.

inefficiency. This study presents a hybrid predictive analytics framework
combining an ARIMA-based timeseries model with machine learning
techniques to forecast transport emissions and evaluate road-torail freight
modal shift scenarios. Using national fleet composition, fuel consumption, and
emissions data for financial year 2023-24, ARIMA is employed to establish a
business-asusual emissions trajectory, while supervised machine learning
models capture nonlinear relationships between freight activity, fuel use, and
modal share. Multiple modal shift scenarios are simulated to quantify the
emissions and energy impacts of increased rail freight penetration. The results
demonstrate that even moderate shifts from road to rail can yield substantial
reductions in carbon emissions and fuel demand. The proposed Al-assisted
framework provides a data-driven decision-support tool for transport policy
planning, supporting climateresilient and energy-efficient freight systems in
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emerging economies.

Pakistan, these challenges are exacerbated by
rapid motorization and a fundamental

1. Introduction
The global transport sector stands at a critical

juncture, functioning as both a vital artery for
economic development and a primary driver of
degradation. Globally,
transportation accounts for approximately one-
quarter of total CO, emissions [1, 2], with road
transport alone responsible for the vast majority
of these greenhouse gases (GHG) (2, 3]. This
sector is widely classified as "hard to abate" due
to its heavy reliance on fossil fuels and complex
logistical constraints. In the specific context of

environmental

structural inefficiency: while motorcycles and
small vehicles constitute over 80% of the
national fleet, the freight sector dominated by
aging, diesel powered heavy duty vehicles
contributes nearly 60% of transport sector CO,
emissions . This imbalance is compounded by a
logistics  network  that has historically
underperformed, as evidenced by Pakistan’s low
ranking and subsequent exclusion from recent
World Bank Logistics Performance Indices [4].
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To mitigate this environmental burden, the
"Avoid  Shift Improve" (ASI) framework
identifies modal shift specifically moving freight
from road to rail as a pivotal decarbonization
strategy [5]. Rail transport offers substantially
superior carbon cost efficiency compared to
road haulage, particularly for long-distance and
bulk freight [6]. Research indicates that rail
freight is significantly less carbon intensive,

with some studies suggesting rail emits up to
80% less CO, than road transport [7] and
requires approximately half the energy for
comparable freight work [8]. Furthermore,
shifting to rail alleviates road congestion and
reduces infrastructure maintenance costs, which
are substantial given that logistical bottlenecks
in Pakistan are estimated to cost the economy

between 4% and 6% of GDP annually [4, 9, 10]

The Road to Greener Logistics: Key Strategies for Decarbonisation
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Navigating this transition requires robust
decision-support tools. This study employs a
hybrid  predictive  analytics  framework
combining an Autoregressive Integrated Moving
Average (ARIMA) model with supervised
machine learning. The selection of ARIMA as
the foundational baseline is deliberate and
addresses specific modeling requirements that
other techniques cannot meet in isolation.

1.1 Why ARIMA? (Establishing the Baseline):
ARIMA is a standard statistical tool for
analyzing time-series data, particularly effective
when the series follows linear trends [11-13]. It
decomposes  data  into  autoregressive,
integrated, and moving average components to
project future points based on historical
patterns [14]. In the context of this study,
ARIMA is utilized to establish a "business as
usual" (BAU) emissions trajectory . It is favored
for its simplicity, statistical efficiency on smaller
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datasets, and interpretability [15]. Recent
studies have successfully used ARIMA to
forecast transitions in energy sectors, such as
the phase-out of fossil fuels [16]. Given that
Pakistan’s historical transport data is often
limited to annual observations rather than
high-frequency big data, ARIMA minimizes the
risk of overfitting that can occur with more
complex models .

1.2 Why Not Deep Learning Alone! (The
Limitation of LSTM):

While Deep Learning models like Long Short
Term Memory (LSTM) networks are powerful
for capturing long term dependencies and non-
linear patterns [17], they possess significant
limitations for this specific application. LSTM
models are "data-hungry," typically requiring
new data to improve accuracy with attention
mechanism and also massive datasets to train
effectively without overfitting [18, 19]
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developing economies where freight activity
data can be scarce or fragmented [20], relying
solely on LSTM can lead to unreliable
predictions. Furthermore, deep learning models
often function as "black boxes," making it
difficult for policymakers to interpret the
specific drivers of a forecast , whereas ARIMA
offers parametric transparency regarding trends

and shocks .

1.3 The Hybrid Innovation:

To address the limitations of ARIMA regarding
non-linearity, this study integrates supervised
machine learning. While ARIMA captures the
linear "momentum" of emissions growth, it
often struggles with complex, non-linear
interactions such as sudden fuel price shocks or
policy interventions [21]. By feeding the
residuals of the ARIMA model into machine
learning algorithms, the hybrid framework
captures both the linear baseline and the non-
linear variations caused by external economic

factors [22].

1.4 Research Novelty and Contribution

The primary innovation of this study lies in
applying this hybrid analytics framework to the
specific, data-scarce context of an emerging
economy. The majority of existing research on
freight decarbonization focuses on developed
regions like the European Union, the United
States, or China [23, 24] , where data
availability allows for different modeling
approaches. There is a distinct lack of
frameworks specifically designed to simulate
road to rail shifts in environments dominated
by unregulated, aging diesel fleets .

By utilizing national fleet composition and fuel
consumption data for the financial year 2023-
24, this study fills a critical gap. Unlike static
discrete choice models that analyze individual
shipper behavior [25], this framework generates
longitudinal national forecasts. It quantifies the
emissions and energy impacts of specific modal
shift scenarios, such as the Pakistan Vision
2025 goal of increasing rail freight share from
4% to 20% (24]. The resulting Al-assisted tool
provides data-driven evidence for policymakers,
demonstrating that even moderate shifts to rail
can yield substantial decarbonization, thereby
supporting  climate-resilient
planning.

infrastructure

ARIMA-based national CO, forecast was
combined with a road-transport modal
structure to evaluate the potential impact of
road-to-rail modal shift scenarios. Freight
transport was identified as the primary
candidate for rail substitution. Moderate (20%)
and aggressive (40%) freight rail-shift scenarios
were  simulated  using
differentials between road and rail transport,
revealing substantial longterm CO; reduction
potential

emission-factor

2. Methodology

2.1 Research Design and Workflow

This study develops a hybrid forecasting-
scenario evaluation framework to quantify
Pakistan’s transportsector CQO, emissions
under a Business-as-Usual (BAU) trajectory and
under road-to-rail freight modal shift pathways.
The method integrates: (i) statistical time-series
forecasting using ARIMA to produce an
interpretable baseline; (ii) supervised machine
learning to model non-linear variations by
learning from ARIMA residuals; and (i)
scenario-based policy analysis to estimate
emissions reductions for alternative rail-share
targets.

2.2 Data Sources and Preparation

National-level transport and energy statistics for
the year 2023-24 and earlier historical years
were compiled, including total road transport
activity before suitable proxies such as fuel
consumption, fleet composition by vehicle
class, and fuel-wise consumption (diesel/petrol)
where available. In parallel, rail freight activity
indicators (e.g., ton-km, traction fuel/electricity
use, or published rail emission factors) were
collected to quantify road-rail emissions
differentials and support modal shift scenario
design. As illustrated in Figure 1, the study
workflow begins with a Data Input stage,
integrating the national CO, time series and
road fleet structure with road and rail emission
factors, followed by Preprocessing steps that
include sorting by year, imputing missing
values, and selecting the target emissions series.
The processed dataset is then used for
Statistical ~ Forecasting, where stationarity
diagnostics (ADF test) guide differencing and
ARIMA order selection (p, d, q) using

information criteria, producing a baseline
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emissions trajectory with uncertainty bounds. assumption. Finally, the framework outputs
Subsequently, the framework  performs Evaluation = metrics, including  scenario
Transport Emissions Allocation to estimate the trajectories and annual CO, reductions
road transport share of national CO, emissions (MtCO,), enabling quantitative comparison of
and isolate the freight-related component as the business-as-usual and  road-to-rail transition
primary candidate for intervention. Building pathways. Throughout the process, data were
on this decomposition, Policy Analysis harmonized to a consistent annual time step
implements road-to-rail freight shift scenarios, and converted to CO, emissions using standard
and the Emission Reduction Module computes fuel-to-CO, conversion factors (or nationally
scenario-based reductions using road-rail adopted emission factors), while variables were
emission factor differentials, producing a normalized or scaled where required for
revised CO, trajectory under each modal shift machine learning.
Data Input
* National CO: time series (1947-2025) Transport Emissions Allocation
* Road fleet structure (FY 2023-24)
* Emission factors (EFroad, EFrail) = Estimate road share y: CO:road(t)=y-CO:total(t)

« Estimate freight share B: CO:road,freight(t)=B-CQO.road(t)

Pre-processing

v

Policy Analysis

* Sort by year

* Impute missing values « Road—rail shift

* Select t t series: CO
piectigtgyt serico : * Freight targeted as main candidate

Statistical Forecasting . .
h 4 Emission Reduction Model

* ADF test — choose differencing (d)
« Select (p,q) by AIC » ACO;(t)=CO:road,freight(t)-5-(1-EFrail/EFroad)
* Forecast 2026-2050 + 95% CI * CO:scenario(t)=CO:total(t)-ACO:(t)
Evaluation
¥
. scenario trajectories

« Annual reductions (MtCO:)

Figure 1. Al-Assisted Road-to-Rail Freight Modal Shift Forecasting Flow diagram

2.3 Baseline Emissions Estimation 4. ARIMA Modeling for BAU Forecast

Annual CO, emissions for the historical period To generate a transparent BAU forecast, an

were estimated as: ARIMA (p,d,g9 model was fitted to the
E = Zf(FCt,f XEFf) (1) historical emissions time series E.. The series

was tested for stationarity (e.g., ADF test) and

where FC, is fuel consumption for fuel type f differenced until stationary (d). Model orders

in year t, and EF; is the corresponding emission (p,q) were selected using information criteria

factor. If fuel consumption was unavailable, (AIC/BIC) and residual diagnostics. The

emissions were estimated using activity-based finalized ARIMA model produced the baseline
factors (e.g., vehiclekm or ton-km) with class-

7 ARIMA . .
i o forecast F over the policy horizon.
specific emission factors. !
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5. Hybrid ARIMA-Machine Learning
Residual Learning

Because ARIMA captures primarily linear
structure, a supervised ML model was trained

to predict ARIMA residuals:
r=E —E"™ )

t t

Explanatory variables (where available) included
macro and transport drivers such as fuel price
indices, freight demand proxies,
GDP/industrial output proxies, and fleet
composition indicators. Multiple algorithms
(e.g., Random Forest, Gradient Boosting, SVR)
can be evaluated; the final model is selected
based on validation performance.
The hybrid forecast is then computed as:

EtHybrid — EtA RIMA + ’fﬂ;ML ( 3)

This preserves ARIMA interpretability while

incorporating non-linear corrections.

6. Scenario Modeling: Road-to-Rail Freight
Modal Shift
Two policy scenarios were simulated relative to
BAU:
e Moderate shift: 20% of freight activity
shifted from road to rail
e Aggressive shift: 40% of freight activity
shifted from road to rail
Let SSS be the shifted share (0.20 or 0.40).
Emissions under a modal-shift scenario are
computed using emission-factor differentials:

EtScenario — EtHybrid —AE ( 4)

t

AE[ — S % 14TFreight X(EF

road

~EF,,) )

where ArFmght is freight activity (e.g., ton-km)

or an equivalent scaling proxy derived from
national freight fuel use. If the dataset provides
only aggregate emissions, the freightrelated
portion is estimated from the road modal

The final hybrid forecast is obtained by
combining the baseline ARIMA forecast with
the predicted residual correction. After
forecasting, scenario modeling is applied to
evaluate road-to-rail freight shifting under
moderate and aggressive shift assumptions,
producing scenario-based emissions projections.
The model outputs include emissions
trajectories over time, estimated emissions

structure (diesel freight share and heavy-duty
contribution), then adjusted using the road-rail
emission factor difference. Scenario outputs
include annual CO, reductions and cumulative
savings over the forecast horizon.

7. Model Evaluation and Validation

The models were evaluated using out-of-sample
testing (rolling-origin or hold-out split) and
error metrics such as MAE, RMSE, and MAPE.
Residual diagnostics (autocorrelation checks
and normality inspection) were performed to
ensure ARIMA adequacy, while ML models
were assessed for overfitting using cross-
validation and hyperparameter tuning.

8. Outputs and Policy Indicators

The framework reports: (i) BAU emissions
forecast; (ii) hybrid forecast improvement
relative to ARIMA-only; (iii) emissions
trajectories under 20% and 40% rail-shift
scenarios; and (iv) cumulative CO, savings and
percentage reductions. These outputs provide
an evidence base to support modal-shift
planning, investment prioritization, and climate
policy assessment.

The proposed AREMA model estimates
transportsector CO2 emissions by integrating
macro and transport drivers, road and rail
emission factors, freight activity, and a defined
shift scenario. The workflow begins with
preprocessing, where the time-series data are
prepared using stationarity checks, differencing,
and model selection criteria such as AIC and
BIC. A baseline “business-as-usual” ARIMA
model is then developed to generate the initial
emissions forecast and extract residual errors. In
parallel, a hybrid residual learning module
trains a machine-learning model using the same
drivers to learn and predict these residual
errors.

reductions and cumulative savings, percentage
reduction, and overall model performance
indicators, as shown in Figure 2.

3. Result and Discussion
3.1 Provincial Fleet Distribution and Dataset
Overview

This study first summarizes the registered road-
transport fleet across four provinces of Pakistan
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(Sindh, Punjab, KPK, and Balochistan) using
the compiled provincial counts reported by
NTRC. The dataset covers 15 vehicle categories
plus a reported total row. After cleaning the
entries (removal of commas, blank spaces, and
dash symbols used for missing values), the
combined fleet size across all provinces equals
7,514,155 vehicles.

The provincial distribution shows a strong
spatial concentration. Sindh accounts for
4116,292 vehicles (54.78%) of the national
fleet, followed by Punjab with 1,684,253
(22.41%), KPK with 1,271,082 (16.92%), and
Balochistan with 442,528 (5.89%). This
indicates a clear dominance of Sindh in terms
of total registered vehicles, which has important
implications for transport-driven emissions
concentration.

3.2 National Fleet Composition and
Dominant Categories

Across Pakistan, fleet composition is heavily
dominated by motorcycles and scooters,
totaling 4,803,871 vehicles (63.93%) of the
national stock. Trucks represent the second
largest category with 1,154,634 vehicles
(15.37%), followed by motor cars at 526,744
(7.01%).

Secondary  contributors  include  pickups
(2.95%), tractors (2.50%), and motor rickshaws
(1.90%), while all other categories contribute
less than two percent individually. These results
confirm that Pakistan’s transport system is
structurally two-wheeler intensive in terms of
count, but heavy vehicles form the second
largest operational block. This dual structure is
highly relevant for emissions modeling, as heavy
vehicles contribute disproportionately to CO,
despite lower numerical representation.

3.3 Freight-Oriented Vehicle Stock

To isolate the logistics-relevant component of
the fleet, freightoriented categories trucks,
pickups, delivery vans, oil tankers, and water
tankers were aggregated. The total freight

oriented stock equals 1,550,493 vehicles,
representing 20.63% of the national fleet.
Thus, approximately onefifth of registered
vehicles are directly linked to goods movement.
This justifies the later modeling focus on freight
activity as a major driver of transportrelated
CO, emissions and scenario-based road-to-rail
shift analysis.

3.4 Provincial Structural Differences
Although motorcycles dominate nationally,
provincial compositions differ significantly.
Sindh shows a freightheavy structure, with
trucks accounting for 26.35%. Punjab is highly
two-wheeler centric (86.45% motorcycles). KPK
displays a mixed structure, with notable shares
of motor cars (12.33%), rickshaws (5.22%), and
trucks (4.62%). Balochistan exhibits higher
shares of tractors (17.14%) and tanker vehicles,
consistent with agricultural and longhaul
transport patterns. These structural variations
imply  regionally  differentiated  emission
intensities and freight dynamics.

Data Consistency Verification, where validation
check was conducted by summing all vehicle
categories within each province and comparing
the result to the reported total. The sums
matched exactly for Sindh, Punjab, and
Balochistan. However, for KPK, the reported
total was 1,280,082, while the internally
summed  categories  equaled 1,271,082
producing a discrepancy of 9,000 vehicles. For
transparency and reproducibility, all subsequent
shares and national totals use the internally
consistent category-wise sum.

3.5 Historical CO5 Emissions

Pakistan’s transportrelated CO, emissions
exhibit a clear longterm upward trend from
1947 onward, with accelerated growth after the
1980s and sharp increases during 2005-2021,
followed by a recent decline. This historical
trajectory is illustrated in Figure 3, which shows
the full emissions time series used for ARIMA
modeling.

https://policyrj.com

| Sanjrani et al., 2026 |

Page 297


https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7022
https://policyrj.com/

Policy Research Journal
ISSN (E): 3006-7030 ISSN (P) : 3006-7022

Volume 4, Issue 2, 2026

leb

Ovarall Fakistan Vohicie Emission of 0O,

Sindf

Balochistan

Punjab

‘wehicks Saock w3 CO2 Emissions (Dual Aais Comparizan)
1

Estimated Total Vehicle Stock

1950

1960 1970 1980

1990

Year

- 250

- 200

T
—
%, ]
o

CO2 Emissions (MtC0O2)

- 100

T
un
(=]

2000 2010 2020

Figure 3. Integrated CO2 Emissions and Contributed Share of Vehicles in Pakistan

3.6 ARIMA Model Identification and
Training Performance
3.6.1 Stationarity Assessment and

Differencing Strategy

Prior to model estimation, the CO, emissions
time series was examined for stationarity. Visual
inspection of the historical trend (Figure 3)
indicates a strong longterm upward trajectory
with structural shifts after 2005 and volatility
post-2018.  Such  behavior  suggests
stationarity in mean.

Preliminary differencing tests indicated that:
No differencing (d = 0) leaves strong trend
persistence.

First differencing (d = 1) reduces trend but
residual autocorrelation remains.

Second differencing (d = 2) produces a more
stable mean structure.

non-

3.6.2 Hyperparameter Setting

The hyperparameter setting is used to optimize
the performance of the model and to ensure
systematic and unbiased model identification, a
full grid search was conducted across
autoregressive orders (p = 0-2), differencing
orders (d = 0-2), and moving average orders (q
= 0-3), resulting in 36 candidate ARIMA
specifications. This search space was designed
to balance model flexibility with parsimony,

avoiding excessive parameterization while still
capturing potential autocorrelation and trend
structures in the emissions series. Given the
clearly trending nature of Pakistan’s CO,
emissions, differencing orders up to d = 2 were
considered to address potential non-
stationarity. Models were evaluated using both
information-theoretic and predictive accuracy
metrics. The Akaike Information Criterion
(AIC) was employed to assess model fit while
penalizing complexity, ensuring that lower AIC
values reflect better trade-offs between
goodness-of-fit and overfitting risk.

The hyperparameter setting of the proposed
model is shown in Table 1 which present the
informative optimized setting of the model with
detailed description that confirm the model
adequacy. Rigorously to evaluate model
performance, Root Mean Square Error (RMSE),
Mean Absolute Percentage Error (MAPE), and
the Akaike Information Criterion (AIC) are
employed, as they provide complementary
insights into accuracy and model adequacy.
RMSE penalizes large prediction errors and is
particularly effective for assessing overall
forecasting precision, while MAPE offers an
intuitive, scale-independent measure of relative
error that facilitates comparison across datasets
and scenarios. AIC further accounts for the
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trade-off between goodness of fit and model comprehensive and reliable assessment of

complexity, discouraging overfitting by favoring predictive accuracy, robustness, and

parsimonious models with strong explanatory generalizability.

power. Together, these metrics ensure a

Table 1. ARIMA Model Hyperparameter Setting

Component Setting Description

Autoregressive order (p) 0.2 Capture§ dependence on up to two lagged
observations

Differencing order (d) 0.2 Accounts for trc?nd and non-stationarity (none,
first, or second differencing)

Moving Average order (q) 0-3 Captures up to three lagged error terms

Total candidate models 36 Full grid . search across p, d, q ranges (36
Combinations)

Data split strategy 80-10-10 Chronological split (no shuffling)

Training period 1947-2009 Used for parameter estimation

Validation period 2010-2017 Used‘for model comparison and hyperparameter
selection

Test period 2018-2025 Used for out-of-sample performance evaluation

Model selection criteria AIC Penalized likelihood criterion for model parsimony

Validation metric RMSE Measures average magnitude of forecast error

Test metric RMSE Assesses generalization performance

Additional accuracy metric MAPE Relative percentage error measure

For predictive evaluation, a chronological 80-
10-10 split was implemented to preserve
temporal causality. The training set (1947-
2009) was used for parameter estimation. The
(2010-2017) guided
hyperparameter selection, while the final test
set (2018-2025) provided an unbiased out-of-
sample performance assessment. Root Mean
Square Error (RMSE) was used as the primary
accuracy metric due to its sensitivity to larger
errors, which is important for
forecasting. Mean Absolute Percentage Error
(MAPE) was additionally computed to provide
scale-independent interpretability. This
structured  evaluation ensures

validation set

emissions

framework
reproducibility, prevents data leakage, and
allows robust comparison of ARIMA
specifications before selecting the final model.

3.6.3 Training Performance Illustration

Figure 4 presents the in-sample training
performance of the selected ARIMA (0,2,1)
model applied to Pakistan’s annual CO,
emissions during the training period (1947-
2009). The blue curve represents the observed
emissions, while the orange curve shows the
fitted values generated by the model. Overall,

the ARIMA (0,2,1) specification demonstrates
strong alignment with the historical emissions
trajectory. The model successfully captures the
gradual growth phase observed between the
1950s and late 1970s, the moderate acceleration
during the 1980s and 1990s, and the more
pronounced upward expansion in the early
2000s. The fitted series closely follows the
curvature of the observed data, indicating that
second-order differencing effectively removes
the strong deterministic trend present in the
raw emissions series.

The slight instability observed at the beginning
of the series (negative spike near the first
observation) is
associated with second differencing, where
initial lagged values are limited. This artifact
does not affect overall model adequacy and
diminishes quickly as the time series progresses.
Importantly, no systematic overestimation or
underestimation is observed across the training
window. Deviations between fitted and actual
values appear small and randomly distributed
rather than trend-driven, suggesting that the
residuals are approximately white-noise during
the in-sample period. This indicates that the
ARIMA (0,2,1) model adequately captures both

a known boundary effect
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longterm structural behavior and shortrun
fluctuations in emissions. The strong in-sample
fit, combined with superior validation and test
performance (as shown in Table 2), supports

the selection of ARIMA (0,2,1) as the final
forecasting model for subsequent scenario and
out-of-sample analysis.

ARIMA Model Training Performance

150 A

100 -~

50 -+

CO2 Emissions
!

—-50 A1

—100

1950 1960 1970

1980 1990 2000 2010
Year

Figure 4. Training performance of the selected ARIMA (0,2,1) model for Pakistan’s CO5 emissions

3.6.4 Selected Model Performance

Multiple ARIMA specifications were evaluated
using an 80-10-10 chronological split into
training, validation, and test sets, and model
performance was compared using AIC along
with forecast accuracy metrics including RMSE
and MAPE. Based on the combined evidence
of strong validation accuracy and parsimonious
structure, ARIMA (0,2,1) was selected as the
primary baseline model. Its out-ofsample
performance, presented in Figure 2 and
summarized in Figure 5, shows that the model
captures the curvature of Pakistan’s long-term
CO, emissions trajectory while avoiding the
excessive  divergence observed in lower-
differencing alternatives. The second-order

differencing  effectively ~ addresses the
pronounced non-stationarity in the series,
leading to stable forecasts that follow the overall
direction of observed emissions across the
validation and test horizons. Importantly, the
95 percent confidence interval expands
gradually rather than explosively, indicating
controlled uncertainty propagation, and most
observed validation and test values remain
within these bounds despite short-term
volatility. Overall, the ARIMA (0,2,1) model
provides a statistically sound and interpretable
baseline that balances trend representation,
uncertainty control, and predictive accuracy,
making it suitable for subsequent scenario-
based emissions analysis.
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Figure 5. ARIMA Model Performance with 95% Confidence Interval
3.7 ARIMA Model Comparison alternatives such as ARIMA (2,2,3) offered only

A comprehensive ARIMA model comparison
was conducted using a full grid search over
autoregressive two,
differencing orders from zero to two, and
moving-average orders from zero to three,
resulting in thirty-six candidate specifications
eighty-ten-ten
chronological split into training, validation, and
test sets. Each model was assessed using an
information criterion for parsimony together
with forecast accuracy metrics on the validation
and test horizons. Across the full search space,
models incorporating second-order differencing
consistently achieved superior performance,
confirming strong non-stationarity in Pakistan’s
CO, emissions series. Among all candidates,
ARIMA (0,2,1) provided the best overall trade-
off between accuracy and simplicity, delivering
the lowest validation error with stable out-of-

while

orders from zero to

evaluated under an

sample  behavior, more complex

marginal gains in fit at the cost of additional
parameters. Therefore, ARIMA (0,2,1) was
selected as the primary baseline model for
subsequent forecasting
emissions analysis. Figure 6 compares out-of-
sample from multiple ARIMA
specifications against the observed CO, series.
The competing models produce noticeably
different post-2010 trajectories: several over-
project rapid growth (clear overshoot after
2020), while others underreact and remain too
flat. The highlighted ARIMA (0,2,1) provides

the best trade-off—its forecast follows the overall

and scenario-based

forecasts

direction and curvature of recent emissions

without excessive divergence. The 95%
confidence band widens gradually with the
forecast  horizon,  indicating  controlled

uncertainty growth and supporting the model’s
stability for medium-term projections.
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Comparison of Multiple ARIMA Models (B0-10-10 Split)
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Figure 6. ARIMA best Model Comparison with various Combination

Furthermore; the Table. 2 provides a
comparative evaluation of eighteen ARIMA
specifications using the Akaike Information
Criterion (AIC) together with validation and
test accuracy indicators (RMSE and MAPE).
The undifferenced baseline family ARIMA
(0,0,q) performs poorest, with extremely large
errors (validation RMSE above 100 and test
RMSE around 163-167), confirming that the
emissions series is strongly non-stationary and
cannot be modeled without differencing.
Introducing autoregressive and moving-average
structure without differencing improves results

but remains inadequate: ARIMA (1,0,1) still

Table 2. ARIMA Model Comparison

shows high forecast errors (validation RMSE
29.52; test RMSE 59.50), indicating that trend
persistence and structural evolution are not
handled properly when d is zero. First
difference models provide partial improvement
in validation accuracy (ARIMA (0,1,0-2) yields
validation RMSE in the 23.49-26.63 range
with relatively low validation MAPE near 6-8
percent), yet they generalize poorly, as reflected
by large test errors (test RMSE above 61 and
MAPE above 27 percent), demonstrating that
single differencing is insufficient to stabilize the
series for reliable out-of-sample forecasting.

Akaike Validation Test
Model Information RMSE MAPE (%) RMSE MAPE (%)

Criterion(AIC)
ARIMA(0,0,0) 652.11 117.41 69.53 166.56 76.87
ARIMA(0,0,1) 570.38 112.46 65.33 165.51 76.37
ARIMA(0,0,2) 502.48 105.06 57.70 163.61 75.48
ARIMA(0,0,3) 455.89 102.09 55.62 162.86 75.13
ARIMA(1,0,1) 302.41 29.52 16.10 59.50 23.61
ARIMA(2,0,1) 309.17 23.20 13.09 31.78 11.84
ARIMA(1,0,3) 296.64 21.68 12.19 39.18 14.23
ARIMA(2,0,2) 306.02 25.29 14.24 38.08 14.10
ARIMA(0,1,0) 345.94 23.71 6.21 61.94 27.38
ARIMA(0,1,1) 334.20 23.49 6.33 61.38 27.11
ARIMA(0,1,2) 317.82 26.63 7.86 67.76 30.18
ARIMA(2,1,2) 298.27 21.45 15.01 54.47 21.03
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Akaike Validation Test
Model Information RMSE MAPE (%) RMSE MAPE (%)
Criterion(AIC)
ARIMA(0,2,0) 339.72 22.55 6.30 57.56 25.20
ARIMA(0,2,2) 293.59 21.31 12.06 23.22 9.11
ARIMA(0,2,3) 290.92 19.37 10.55 22.55 9.39
ARIMA(2,2,2) 296.64 20.28 11.27 22.69 9.25
ARIMA(2,2,3) 294.31 20.73 11.64 22.86 9.18
ARIMA(0,2,1) 290.71 19.25 10.24 22.18 9.25

In contrast, models with second-order
differencing consistently outperform all other
families, producing the lowest validation and
test errors and confirming that higher-order
non-stationarity dominates the emissions
dynamics. Within this competitive d equals two
group, ARIMA (0,2,3) attains the lowest AIC
(290.92) and strong accuracy (validation RMSE
19.37; test RMSE 22.55), while ARIMA (0,2,2),
ARIMA (2,2,2), and ARIMA (2,2,3) show
closely comparable performance with only
marginal differences in RMSE and MAPE.
Notably, ARIMA (0,2,1) achieves the best
overall balance of fit and forecast accuracy (AIC
290.71; validation RMSE 19.25; validation
MAPE 10.24 percent; test RMSE 22.18; test
MAPE 9.25 percent), indicating a parsimonious
yet robust structure. Overall, the results
demonstrate that second differencing ‘is
essential for capturing the underlying emissions
trend behavior, and the leading d equals two
models deliver stable and accurate medium-

term forecasts suitable for subsequent scenario
analysis.

3.8 Road-to-Rail Modal Shift Scenarios and
Emissions Impact
The ARIMA (0,2,1) model (selected in the
forecasting section) provides the business-as-
usual  baseline projection of Pakistan’s
transport-related CO, emissions (mean forecast
with 95% prediction interval). The road-to-rail
scenarios were then implemented as a policy
ARIMA  baseline by
proportionally reducing the baseline emissions
to reflect shifting freight activity from road to
rail. Using the study’s working assumptions
road-freight share of transport CO, = 60% and
rail freight emitting about nine times less CO,
per tonne-km than road freight as shown in
Table 3, the implied system-level reductions
equal 10.7% for a 20% shift and 21.3% for a
40% shift, applied consistently to the ARIMA

mean forecast and its 95% bounds.

overlay on this

Table 3. ARIMA baseline forecast and emissions under road-to-rail shift scenarios

, 20%
Year Baseline ARIMA mean hife
“ar 1 195% PIl °
mean

20% reduction

40% shift mean 40% reduction

2026 | 199.74 [185.03-214.45] | 178.44 | 21.31 (10.7%) 157.13 42.61 (21.3%)

2030 | 199.89 [155.53-244.24] | 178.56 | 21.32 (10.7%) 157.24 42.64 (21.3%)
2035 | 199.89 [135.79-263.98] | 178.56 | 21.32 (10.7%) 157.24 42.64 (21.3%)
2040 | 199.89 [120.84-278.93] | 178.56 | 21.32 (10.7%) 157.24 42.64 (21.3%)
2045 | 199.89 [108.30-291.47] | 178.56 | 21.32 (10.7%) 157.24 42.64 (21.3%)
2050 | 199.89 [97.28-302.49] 178.56 | 21.32 (10.7%) 157.24 42.64 (21.3%)

Building on the selected ARIMA (0,2,1) (e.g., 2026 baseline 199.74 MtCO, reduced to

baseline, the road-torail scenarios indicate
substantial emissions abatement relative to the
business-as-usual trajectory. Under the 20%
modal shift, the projected CO, level decreases
by 10.7%, corresponding to approximately 21.3
MtCO, per year across the forecast horizon

178.44 MtCO3). Under the more aggressive
40% shift, emissions decrease by 21.3%,
equivalent to roughly 42.6 MtCO, per year
(e.g., 2026 reduced to 157.13 MtCQO,). While
the ARIMA mean forecast remains near 200
MtCO,, the 95% prediction interval widens
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with time, implying that the absolute abatement
also varies with uncertainty; for example, by
2050 the implied reduction ranges from about
10.4 to 32.3 MtCQO, for the 20% case and 20.8
to 64.5 MtCO, for the 40% case when
propagating the baseline interval bounds.
Overall, the scenario overlay shows that shifting
freight from road to rail can deliver material
and scalable CO, reductions, with the 40%
scenario providing approximately double the
abatement of the 20% case, conditional on
achieving the assumed modal shift in freight
activity.

3.9 Discussion

This study presents an integrated, data-driven
assessment of  Pakistan’s  road-transport
structure and longrun transportrelated CO,
trajectory by combining provincial fleet
statistics, time-series forecasting, and modal-
shift scenario analysis. The fleet results reveal a
highly uneven provincial distribution, with the
largest  concentration in  Sindh  and
comparatively smaller shares in Punjab, Khyber
Pakhtunkhwa, and Balochistan. Nationally,
motorcycles dominate the vehicle stock, while
trucks form the most significant heavy-vehicle
block, which is important because heavy-duty
freight vehicles typically contribute
disproportionately to fuel consumption and
emissions relative to their counts. These
structural findings motivate the modeling
strategy adopted in this work: establishing a
robust baseline CO, projection from historical
emissions dynamics and then evaluating policy
overlays that target freight activity. From a
forecasting perspective, the historical emissions
series exhibits strong non-stationarity and
changing growth regimes; the ARIMA grid
search confirms that undifferenced and first-
difference models generalize poorly, whereas
second-difference  specifications  consistently
achieve lower validation and test errors.
Accordingly, ARIMA (0,2,1) was selected as a
parsimonious baseline model with stable out-of-
sample behavior, controlled uncertainty growth,
and prediction bounds that capture most
validation and test observations, making it
suitable as a statistical benchmark for scenario
comparison rather than a causal representation
of underlying drivers.

Building on this ARIMA baseline, the road-to-
rail modal shift scenarios translate projected
emissions into  policy-relevant abatement
estimates using transparent
accounting assumptions. Under the adopted
design, shifting 20 percent of road-freight
activity to rail yields an estimated reduction of
about 10.7 percent of transport CO,, while a
40 percent shift yields about 21.3 percent
reduction,  approximately = doubling  the
abatement as expected under proportional
scaling. In addition to emissions reduction, the
scenarios imply co-benefits such as reduced
highway congestion from heavy vehicles, lower
pavement damage, improved safety, and
potential reductions in local pollutants along
freight corridors; however, feasibility differs
substantially between scenarios. A 20 percent
shift is more realistic in the near to medium

emissions

term with targeted terminal upgrades, improved
service reliability, and intermodal integration,
whereas a 40 percent shift typically requires
major capacity expansion (rolling stock, track
throughput, terminal handling), operational
reforms (dispatching priority, scheduling,
reliability standards), and strong last-mile
logistics to avoid bottlenecks. Key limitations
include the univariate nature of ARIMA (lack
of explicit causal drivers), the use of aggregate
transport emissions without direct passenger-
freight separation, and potential variability in
rail-to-road emission intensity by corridor and
operating conditions; future work should
therefore incorporate exogenous drivers via
ARIMAX-type models, adopt bottom-up
activity-based emissions accounting in tonne-
km, and expand the scenario set to include rail
electrification, trucking efficiency
improvements, logistics optimization, and
vehicle electrification pathways.

4. Conclusion

This study combined provincial vehicle fleet
statistics with timeseries forecasting to
characterize Pakistan’s transport structure and
project transportrelated CO, emissions. The
descriptive results indicate strong provincial
concentration of registered vehicles and a
national fleet dominated by motorcycles, while
trucks represent the most significant heavy-
vehicle block, supporting the emphasis on
freight activity in emissions mitigation analysis.
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For forecasting, a systematic ARIMA grid search
under an  80-10-10 split  confirmed
pronounced non-stationarity in the historical
emissions  series, with  second-difference
specifications  consistently  outperforming
undifferenced and first-difference alternatives.
Based on forecast accuracy and model
parsimony, ARIMA (0,2,1) was selected as a
robust baseline model, providing stable out-of-
sample behavior with controlled uncertainty
growth. Scenario overlays further suggest that
shifting freight from road to rail can deliver
meaningful abatement relative to the baseline,
with the 40 percent modal-shift case achieving
substantially greater reductions than the 20
percent case, conditional on rail capacity
expansion, terminal readiness, and service
reliability. Future work should strengthen both
the predictive realism and policy fidelity of the
framework. First, the baseline model can be
extended from a univariate ARIMA to
multivariate forecasting (e.g., ARIMAX or
related models) by incorporating exogenous
drivers such as freight activity proxies, fuel
consumption, GDP, fuel prices, and policy
shocks to better handle structural changes.
Second, the scenario module should be
upgraded from proportional reductions to a
bottom-up activity-based approach that links
vehicle stock, utilization (vehicle-km/ton-km),
and emission factors, enabling corridor-specific
road-to-rail shifts and technology pathways (e.g.,
rail electrification, cleaner trucking standards).
Third, uncertainty analysis can be expanded
through sensitivity testing of key parameters
(freight share, railto-road emission intensity
ratio, achievable shift levels) to provide robust
ranges for decision-makers. Finally, integrating
richer datasets (freight tonnage, logistics flows,
rail throughput constraints, and disaggregated
passenger vs freight emissions) will improve
interpretability and support implementation-
oriented decarbonization planning.
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