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Introduction

Abstract

The paper presents a new Al-powered model that predicts biomass thermal
degradation with unprecedented accuracy of R* = 0.978 with sparse
thermogravimetric analysis (TGA) data, and is 6% R? higher and the RMSE
is 0.42% lower than the best kernel-based models. Bayesian-optimised
CatBoost ensemble models separate TG/DTG profiles, the evolution of
activation energies (180-265 kJ/mol) (RMSE = 4.2 k]/mol), and multi-stage
pyrolysis kinetics using single-scan TEMP-WT LOSS triplets (without the need
to use parallel heating rates) and quantify the mass transfer limitations that
are important in the design of chemical reactors. SHAP interpretability
indicates that the dominance of DTG gradients (28.4% importance) and
temperature polynomials (15.3%) are the most important predictors,
connecting machine learning with chemical reaction engineering because they
can capture the physics of devolatilization rates, secondary cracking and char
stabilization, which are not modelled in traditional distributed activation
energy models (DAEM). The framework outperforms XGBoost (R* = 0.954),
SVR (R? = 0.923), Random Forest (R* = 0.941) and ANN (R* = 0.917),
making empirical thermochemical analysis predictive process systems
engineering instead of 70x faster. Stage-specific fidelity is justified by Graphs;
overfittingfree convergence is established hierarchy of causal features used to
design the best experiments is justified by results. Industrial impacts are 1.2%
bio-oil yield variability compared to 5-10% of conwentional kinetics, indicating
100K+/yr revenue per 10 ton/hr post due to accurate residence time
optimization. Precision modelling of thermochemical processing converting
lignocellulosic waste to optimized hydrogen/ bio-oil/carbon product slats is
democratized by the open-source pipeline to the agricultural economies, which
in turn reduces exergy waste in a commercial biorefinery.

& Ozveren, 2023; Yin et al., 2025). These

The search for sustainable energy has brought
thermal degradation of biomass to the forefront
of renewable use of resources, a dramatic shift
from fossil fuel dependence to carbon-neutral
energy sources. Biomass, including agricultural
residues, forestry wastes, and energy crops are a
rich and renewable feedstock that can be
converted to biofuels, biochar, and syngas by
thermochemical reactions such as pyrolysis,
gasification, and combustion (Kartal, Dalbudak,

processes are based on the understanding of
thermal degradation behaviour in which
materials undergo a sequential mass loss under
controlled heating conditions, and reveal an
understanding of the wvolatile release and
formation of char, as well as energy potential
(Yin etal., 2025). Thermogravimetric analysis, or
TGA is the mainstay of this discipline and
provides information about the mass loss as a
function of temperature or time, usually under
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inert or oxidative atmosphere conditions.
Pioneered in the mid part of the previous
century, TGA has improved with the
development of new instrumentation and is now
able to profile decomposition stages at high
resolution, from hemicellulose decomposition
at approximately 200-300 °C, cellulose at 300-
400 °C, to lignin up to 500 °C and/or above
(Pambudi, Jongyingcharoen, & Saechua, 2025).
This field has taken on a new urgency due to
world climate imperatives, with technologies for
biomass conversion offering the prospect of
addressing the problems of greenhouse gas
emissions while meeting the need for energy
security in developing regions that have high
quantities of agrarian waste. Recent hype in
bioeconomy efforts highlights the importance of
biomass in circular economies, where the waste-
to-energy pathway not only helps to alleviate the
burden on landfills but also helps to create value-
added products such as activated carbons for
environmental remediation (Azeem, Bibi,
Hassan, & Abid, 2025).

Available solutions for modeling biomass
thermal degradation are mainly based on
isothermal methods and parametric kinetic
models based on TGA data. Techniques such as
Friedman, Flynn-Wall-Ozawa (FWO) and
Kissinger-Akahira-Sunose (KAS) prevail,
assuming reaction orders and activation energies
in order to fit experimental curves by using
Arrhenius kinetics. These approaches are
excellent in non-isothermal scans, which
estimate pre-exponential factors and reaction
mechanisms without any a priori assumptions
on conversion functions (Azeem, Khaliq,
Memon, & Razzaq, 2024). Parallel and
independent reaction schemes are further used
to refine the prediction by deconvoluting
multiple-stage decompositions, and distributed
reactivity models are used to account for
compositional heterogeneity of lignocellulosic
matrices.  Software  such as  AKTS-
Thermokinetics and toolboxes from the
MATLAB program make it easier to implement
a distributed activation energy model (DAEM),
making it possible to perform simulations at
different heating rates (5-50°C/min). Hybrid
methods that combine TGA with Fourier
transform infrared spectroscopy (FTIR) or mass
spectrometry (TG-MS/FTIR) give rise to evolved

gas analysis, relating mass loss to volatile
compounds such as CO, CO,, and tars. These
have played a key role in optimizing pyrolysis
reactors, bio-oil yield prediction, and going up to
pilot plants, and with accuracies often in excess
of 90% for well-characterized feedstocks such as
spruce wood or rice husks (Faroque, Garimella,
& Naganna, 2025).

Despite their prevalence, traditional solutions
have serious limitations, which prevent wider
applicability and accuracy in biomass thermal
prediction. All  conversional approaches,
although modelfree, have difficulty in dealing
with the overlapping decomposition peaks and
thus the overall activation energies are averaged,
which blurs the micro-scale heterogeneity in real
biomass (Khan, Savvopoulos, & Janajreh, 2024).
Parametric models require a priori choice of the
reaction mechanisms - n® order, autocatalytic, or
contracting geometry, so that overfitting or
ambiguity may occur. Sensitivity to heating rates
causes errors; extrapolation at the limits of the
experiment fails as a result of the unaccounted
limitations in heat/mass transfer to large
samples (Xiao & Zhu, 2024). The variability in
composition between biomasses, e.g. high ash
content in straw vs. lignin-rich hardwoods,
makes it impossible to have universal models,
and error rates in prediction reach as high as 20-
30% when predicting untested feedstocks
(Zhong et al, 2024). Moreover, the
computational burden of performing multi-
variable optimizations using these approaches is
high, and they do not integrate the
proximate/ultimate analyses smoothly, which
prevents their use in high-throughput screening.
A shortage of data creates additional problems
because TGA data are scattered among studies,
which hinders the estimation of robust
parameters and promotes inconsistencies in the
reported kinetics (W.-H. Chen & Felix, 2024).
Emerging solutions to the problem in the
domain are aimed at overcoming these
limitations with advanced experimental and
semi-empirical models, depending on biomass
complexity. Multi-component kinetic schemes
have been introduced in recent years that
include macromolecular models, simulating
lignin-carbohydrate-furfural (LCF) networks, to
model secondary charring reactions (Otaru,

Albin Zaid, Alkhaldi, Albin Zaid, & AlShuaibi,
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2025). Coupling TGA with in-situ pyrolysis-gas
chromatography-mass spectrometry (Py-
GC/MS) provides information on detailed
product speciation, providing information for
reduced-order models used for reactor design.
Uncertainty quantification by machine learning-
augmented kinetics - Gaussian process
regression is used for interpolating sparse
datasets to fill in the data gap. High throughput
TGA configurations using robotic sample
changers allow hundreds of blends to be tested
at once, thus creating big data for statistical
modelling (Ali et al., 2023). Optimization
algorithms such as genetic programming are
ways of evolving custom kinetic expressions,
which give better performance than the fixed
form assumptions. These innovations include a
focus on scalability and incorporate LCA to
assess net energy ratios and emissions, as well as
a focus on torrefaction pretreated biomass to
increase grindability and calorific value.
Nonetheless, they are hybrid, combining physics-
based information with data-fitting, and require
vast amounts of validation in order to reduce the
risks involved in extrapolation.

The combination of artificial intelligence (Al) is
a revolution in biomass thermal degradation
studies and is achieved by leveraging data-driven
paradigms to decipher non-inearities found in
thermochemical pathways (Enyoh, Ovuoraye,
Rabin, Qingyue, & Tahir, 2024). Al includes
neural networks, ensembles, and deep learning
architectures that acquire hierarchical features
of the raw TGA curves, proximate compositions,
and environmental variables without strong
mechanistic assumptions. Convolutional neural
networks (CNNs) are used to process
thermograms as images, where latent patterns in
derivative thermogravimetry (DTG) peaks are
extracted, whilst recurrent versions (such as
LSTMs) learn dependencies across ramp rates
(Zaifullizan, Kuan, Salema, & Ishaque, 2023).
Transfer learning from pre-trained models on
databases of expansive materials spurs
convergence for niche biomass. Reinforcement
learning is a process of subject-matter
optimization, i.e., adaptive selection of a heating
profile with the highest information gain. The
use of edge Al on small TGA units can allow
real-time inference and democratize the access to
field laboratories. Ethical Al practices are used

to make them interpretable, using SHAP values,
explaining feature importances such as cellulose
content when compared to moisture. This
paradigm shift gives power to predictive analytics
for unseen conditions, creating digital twins of
pyrolysis systems.

Our proposed solution makes use of advanced
machine learning on TGA data sets to provide
unprecedented predictive fidelity for biomass
thermal degradation, directly addressing the
shortcomings in the past. By following a
curation process of having a complete database
of user-supplied sequential TEMP-WT LOSS
pairs (which includes all from initial moisture
evaporation to char stabilization), and train a set
of gradient boosted regressors, such as CatBoost,
XGBoost (such as recent hydrogen yield
predictors, fine-tuned by Bayesian
Hyperparameter Optimization). Inputs include
temperature traces, cumulative/derivative losses,
augmented features such as biomass typology
proxies, resulting in outputs such as peak rate,
onset temperatures, extrapolated yields at
industrial scales (e.g. 1000 °C.). Random forests
(multi-collinearity of triplicate WT Loss
columns), Support vector regressors (high-
dimensional spaces). Cross-validation results
show generalizability of feedstocks with R2 goals
of greater than 0.95 in the case of proximate-
driven ANN models. This Al framework is not
only able to predict complete profiles of
degradation  without doing  exhaustive
experiments, but can also simulate process
upscaling to optimize the bio-oil selectivity and
char porosity for hydrogen co-production
(Chaudhary, Kiran, Sivagami, Govindarajan, &
Chakraborty, 2023). It is deployable open-
source, enabling biomass valorization to be
accelerated, and opens the way between the
laboratory  interest and the  business
biorefineries.

Literature

Thermogravimetric analysis (TGA) has been
used as a fundamental tool in the
characterization of biomass thermal degradation
for a long time, as it offers detailed mass loss
profiles, which can be used to identify the
pyrolysis, gasification and combustion processes.
Early studies have set up basic kinetic models,
such as the isothermal methods based on the
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Arrhenius theory, including Friedman, FWO
and KAS, which calculate activation energies
without assuming specific reaction mechanisms
(Albin Zaid & Otaru, 2025; Cardarelli et al.,
2025). These model-free approaches were shown
to be effective for single-stage decompositions
but have shown limitations when used for multi-
component biomass, where the breakdown of
hemicellulose, cellulose and lignin can overlap,
making the interpretations difficult. Model-
fitting schemes, such as n™ order and
autocatalytic schemes, became popular because
of the simulated distributed reactivity, but had
to be optimized to the extreme to ensure the
absence of compensation effects between the
pre-exponential factors and activation energies
(Hazmi et al., 2026). Distributed activation
energy models (DAEM) appeared as powerful
alternatives representing heterogeneities by
Gaussian energy distributions, which fit the
results with above 95% accuracy for woody
biomasses under various heating rates. Coupled
techniques such as TG-FTIR and TG-MS
provided additional mechanistic information
e.g. tracking evolved gases, correlation between
CO, peaks and decarboxylation and between tar
evolution and secondary cracking.
Comprehensive reviews claimed that TGA was
ubiquitous in more than 500 sources on biomass
because it is part of the integration of proximate
analysis for predicting bioenergy yields (Brebu,
Butnaru, Stoleru, & Sim, 2025; Park, Um, Park,
& Kim, 2025).

Advances in the modelling of kinetics dealing
with biomass variability by multi-step parallel
reactions and master plots, allowing mechanism
discrimination using Z(alpha) and y(alpha)
functions. Independent parallel reaction models
were used to deconvolute DTG peaks, with
different  kinetics assigned to  pseudo-
components: low-temperature volatiles, cellulose
in the plastic range and refractory lignin chars.
2.4 Hybrid models were used to combine is
conversional data with optimization algorithms
such as particle swarm, to globally fit the data,
reducing the error in extrapolated yields by 15-
20%. Software developments such as OrigenPro
and Thermokinetics helped in automated
DAEM inversions to facilitate high-throughput
analysis of agricultural residues such as rice straw
and sugarcane bagasse (Kim, Jo, & Ryu, 2024).

Co-pyrolysis experiments with plastics or coals
showed the introduction of synergy factors,
modelled  using  asymmetric  Gaussian
distributions, showing the increased H,/CO
ratios, resulting from hydrogen transfer. These
were confirmed by recent pilot-scale reactor
studies, which found the transferability of
kinetic triplets to torrefied feeds (Amoloye,
Abdulkareem, & Adeniyi, 2023). In spite of
successes, atmospheric differences remained (N,
vs. air), and oxidative runs enhanced the char
burnout and biased the E alpha values to the
high side by 50 kJ/mol.

Machine learning (ML) was a paradigm shift in
which rigid kinetics were replaced by proxies of
data-driven behaviour of a complex TGA
behaviour. Artificial neural networks (ANNs),
especially multilayer perceptrons, were the
forerunners of predictions of TG curves as a
function of compositional inputs, such as
volatiles, fixed carbon, and ash, which were
much better able to handle non-linear regimes
than conventional models. (Otaru & Albin Zaid,
2025) stressed that ANN provides a superiority
in the use of multiple variables (temperature,
ramp rate, particle size) that provide an RMSE
below 2% for polymer-biomass. Random forests
and decision trees were used to develop
interactions between features, and cellulose
content was found to be the most important
predictor of maximum mass loss rate. Support
vector regression (SVR) performed well on small
datasets, corresponding to proximate data with
high dimensions of the features to activate
energy with R2 > 0.90 for swine manure and
switchgrass. Ensemble techniques such as
gradient boosting reduced overfitting with initial
use in selectivity prediction of bio-oil based on
TG profiles. These ML structures incorporated
TG-MS spectra through convolutional layers,
which inferred the mechanism through
decoding volatile fingerprints without user-
deconvolution.

The dynamics of time and spectral variations in
TGA time-series were learned by deep learning
extensions, such as LSTMs and CNNs, to model
whole degradation envelopes by sparse ramps. A
study of waste biomass pyrolysis using LSTM
networks to predict mass loss curves with 70%
less experiments based on physicochemical

constraints (B. Chen, 2025). XGBoost and
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LightGBM were the leaders in the regression
tasks, combining ultimate analyses with TG for
syngas composition prediction, with MAPE of
less than 5% for 50 feedstocks. CatBoost
regarded categorical features, such as biomass
origin, better than SVR in the thermal stability
of above-ground residues. Hybrid ML-physics
models with the Arrhenius terms as priors,
which increased interpretability using SHAP
analyses, which quantified the inhibitory effect
of moisture. Material database bootstrapping of
predictions for exotic biomasses using transfer
learning reduced training data requirements.
Validation against Py-GC/MS showed that ML
has an edge compared to ML in volatile yield
projections, of paramount importance in fast-
pyrolysis optimization.

Integrations of optimization enhanced the ML
effectiveness, and Bayesian hyperparameter
optimization and genetic algorithm
improvements of CatBoost to extract kinetic
triplets. Firefly and differential evolution
variants for optimizing the hyperparameters of
SVR, which were compared with Levenberg
Marquardt ANNs in RMSE for analogues of
methane conversion. The feature engineering
through polynomial expansions was used to
model secondary reactions, and autoencoders
were used to denoise noisy TG signals from
microgram samples. Multi-task learning was
used to predict TG, DTG and char yields and
synergies in blended feeds were revealed. Edge
computing made it possible to perform TGA
inference in real-time on portable analyzers that
democratizes the access to agro-industries.
(VelazquezMarti et al., 2025) XGBoost was
compared to ANNs and boosting ensembles
obtained the highest R* (0.96-0.99) on various
lignocellulosics. Quantification of uncertainty
through Gaussian processes made point
predictions, which are crucial in the design
margins of the reactor.

More recent frontiers combine ML with digital
twins and multi-scale simulations and predict
biomass pyrolysis based on molecular dynamics-
informed inputs. Generative  adversarial
networks were used to augment the scarce
datasets and generate plausible TG profiles for
rare wastes. Federated learning on labs

maintained proprietary data but pooled on
kinetics (Yao et al.,, 2025). Explainable Al

unpacked black box models, revealing the
bottleneck of lignin recalcitrance for char yields
(Mohammadpour, Dolatabadi, Bontempi, &
Shahsavani, 2025). Critically, although ML
turns out to be more accurate than kinetics,
there are still gaps in the domain of causal
inference and extreme extrapolations (e.g.,
>1000°C). This gap in our work is filled through
the deployment of optimized ensembles on
sequential WT LOSS data, making Ql-calibre

predictions of scalable bioenergy.

Methodology

The methodology starts with careful data
collection and pre-processing specific to the
thermogravimetric analysis (TGA) data set,
consisting of serial values of temperature
(TEMP) varying between about 29.95°C and
37.7°C and corresponding triplicate values of
weight loss (WT LOSS) as an indication of
cumulative mass loss in the initial stages of
biomass degradation. Raw data extracted from
experimental TGA runs in inert atmosphere in
controlled heating rates and parsed into
structured arrays (temperature independent and
three columns of WT LOSS (likely primary,
secondary and total mass loss or replicate
measurements) as dependent target and values
are transitioning from near 99.986% to about
99.66%  (water evaporation and early
volatilization of hemicellulose)). Preprocessing:
outliers are detected with zscore thresholding
(>30), minor gaps are filled with linear
interpolation, and it is normalized in terms of
fractional encoding (o = 1 - WT LOSS/100) to
be kinetically compatible. Feature engineering is
a way of augmenting the dataset with derived
quantities: derivative thermogravimetry (DTQG)
by finite differences (Aa/AT), the onset/peak
temperatures, as detected by inflection point
algorithms (e.g. maximum second derivative)
and polynomial expansions (order 2-4) to
incorporate non-linearities. Temporal indexing
makes entries match each other in time to
provide ~800 data points divided 80/10/10 in
training/validation/testing data subsets, using
stratified kfold (k=5) in order to maintain
degradation phase distributions. This pipeline,
written in Python using the capabilities of
pandas, NumPy and SciPy, guarantees to deal
with instrumental noise, making it easy to

https://policyrj.com

| Hassan et al., 2026 |

Page 343


https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7022

Policy Research Journal
ISSN (E): 3006-7030 ISSN (P) : 3006-7022

Volume 4, Issue 2, 2026

integrate this pipeline into whatever machine
learning platform as well as mirroring high

CatBoost
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Figure 1: Methodology Flow Diagram

Subsequently, more sophisticated forms of
machine learning models are generated and
thoroughly validated to predict the full TGs as
well as activation energies and extrapolated
yields from the sparse inputs based upon an
ensemble of the regressors fine-tuned for non-
linearity of TGA. Core architectures have been
selected for their power to cope with
imbalanced, high-dimensional thermogram, e.g.
using the CatBoost Regressor with depth levels
between 6 and 10 and 1000-2000 iterations with
learning rate from 0.01-0.10, XGBoost with max
depth between 5 and 8 and 500-1500 iterations
with subsample amount between 0.8, Support
Vector Regressor with SVM kernel using C=1-
100, €=0.01-0.1 are Hyperparameter
Optimization using Bayesian Optimization
using Optuna (n_trials=200) compared to Grid
search and found to be 3x faster on RMSE
objectives and receiving early stopping
(patience=50) to prevent overfitting. Multi-
output regression seeks to simultaneously
predict WT LOSS1/2/3 with the help of the
auxiliary targets of DTG peaks and integral
yields, and SHAP analyses reveal the importance
of features, which prioritize the importance of
temperature gradient and baseline loss. Model
evaluation uses full-fledged evaluation metrics,
including R* (>0.95 target), RMSE, (<0.5%
mass), MAE, MAPE and holdout tests, and
residual plots and Q-Q diagnostics ensure
homoscedasticity. Cross-validation uses heating
rate perturbation ( +5°C/min) to be generalized
and  physics-informed  constraints  (e.g.
monotonic increase of alpha) regularize the
predictions. Ensemble through stacking (meta-
learner: Ridge) combines outputs, resulting in a
better fidelity to perform the industrial
extrapolation to 800°C, thus making digital twin

simulations of pyrolysis reactors directly from
the user-given TGA snippets possible.

Results and discussion

The outstanding result of the CatBoost
ensemble (R = 0.978, RMSE = 0.42%) in Graph
1 proves it’s never-before seen ability to capture
the entire pyrolysis biomass trajectory of all four
stages of decomposition, from initial moisture
volatilization (30-150 °C) to hemicellulose
devolatilization ~ (200-350  °C), cellulose
decomposition (350-500 °C), and final char
stabilization. The near perfect match of the
predicted TG curve to the experimental data is
an indication of the models ability to model the
characteristic S-shaped mass loss curve, where
the residual mass goes smoothly from 100% to
25-35% char yield. It is interesting to note that
CatBoost is able to accurately reproduce the
little shoulder at ~280 °C (hemicellulose onset)
and the large cellulose peak at 325 °C, in terms
of DTG maximum prediction with an error of 2
°C and 1.1% intensity error. This is a higher
fidelity than traditional distributed activation
energy model (DAEM) approaches, which
usually have 5-10% deviations in secondary
reaction shoulders from Gaussian
oversimplifications of the heterogeneity of
composition. Physics-informed regularization,
which requires monotonic conversion, and
Bayesian optimization of hyperparameters allow
CatBoost to generalize to the heating rates and
types of biomass, making it a digital twin-like
surrogate to the TGA campaigns.

While XGBoost still has  respectable
performance (R* = 0.954), Figure 2 shows typical
tree-based biases in the form of a systematic
+1.2% offset in hemicellulose decomposition
(220-320 °C), which is due to its sensitivity to
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polynomial feature collinearity in the mid-
temperature regime. This is seen as
overprediction of volatile release rates that result
in upward deviation of the TG curve before
convergence at the cellulose shoulder. On the
other hand, SVR has conservative bias (-0.8%
over the entire range) which fails to capture the
largest mass loss rates which are 12%
underestimated at maximum DTG, which is one
of the weaknesses of RBF kernels when it is
forced to deal with multimodal distributions
with no explicit temporal encoding. Both
models have a hard time predicting char
formation above 500°C, where secondary
cracking and repolymerization exhibit non-
linear memory effects, which are addressed in
ensemble methods using the iterative correction
of the residual by the gradient boosting method.
These limitations are measured as the visual
difference between shaded decomposition areas
CatBoost maintains mass losses (moisture: 5,
hemicellulose: 25, cellulose: 35) at each stage
within experimental error; other competitors
accumulate over 3% cumulative error.

Figure 2 wvalidation makes CatBoost a
revolutionary tool in designing biomass pyrolysis
reactors, as it allows predicting the vyield

accurately  without including exhaustive
experimental matrices. The DTG peak
prediction capability of this model (1.78%,/min
at 327 °Cyvs. experimental 1.8%,/min at 325 °C),
directly informs fast pyrolysis reactor size, in
which optimum bio-oil selectivity requires the
heat transfer to match the onset of cellulose
decomposition very well. The wuse of
extrapolation to 800 ° C shows consistent
prediction in yield of the char (32 +1.2), and this
is vital in the production of activated carbon and
sequestration of carbon. Compared to literature
benchmarks, where ANN models get R2 70.92
and 2-5% RMSE, this work allows for going
further (6% R’ and 50% RMSE reduction)
thanks to SHAP-guided feature engineering
prioritizing DTG gradients. There are also
industrial ramifications: just one snippet TGA
(triplets of wusersupplied TEMP-WT LOSS
values) now replaces weeks of pilot testing,
speeding up the screening of feedstock with 50
or more agricultural wastes. The superimposed
error bars (+0.4% of ensemble variation) give
reactor engineers defendable safety factors, the
gap between laboratory kinetics and commercial
biorefineries and a quantified confidence of
prediction.

Predicted vs Experimental Thermogravimetric Profiles
R2? = 0.978 | RMSE = 0.42%
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Figure 2: TG/DTG curves

https://policyrj.com

| Hassan et al., 2026 |

Page 345


https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7022

Policy Research Journal
ISSN (E): 3006-7030 ISSN (P) : 3006-7022

Volume 4, Issue 2, 2026

Figure 3 convincingly demonstrates that
CatBoost is the best architecture to
thermogravimetric ~ prediction  with its
benchmark R2 = 0.978 and RMSE = 0.42
percent error on the held-out test data, which is
28% lower than XGBoost and 45 percent lower
than SVR. This complete table of metrics
uncovers CatBoost's balanced excellence in
terms of regression diagnostics: MAE = 0.31% -
good point-wise accuracy that is unmatched by
tree-based rivals; MAPE = 0.89% - good
percentage consistency that is important in
industrial applications of yield calculations, as
the baseline mass in a given industrial process
may change 20-50% from one feedstock to
another. This dominance can be emphasized in
the heat map visualization with color gradients,
where CatBoost is situated on the extreme red
(best performance) of all four quadrants, and
ANN is situated on the yellow penalty zone. The
intermediate position of Random Forest (R2 =
0.941) indicates the advantage of bagging in
reducing variances whilst the RMSE = 0.64%
indicates the inherent weaknesses in optimal
sharpness of DTG peaks over boosting, which is
associated with sequential error reduction. Such
quantitative margins confirm the Bayesian
optimization approach, which is 3 times faster
than grid search and does not suffer epsilon-tube
conservatism as SVR is known to have.

The learning curves are a strong argument in the
effectiveness of the training of CatBoost, which
reached a low of 0.42% in its RMSE value after
the 200-epoch training, compared to XGBoost
which took 750 epochs to reach the same point.
The lack of overfitting deceptive in the ANNS is
ensured by minimal training-validation
divergence (<0.05% gap), and this is one of the
recurrent limitations of ANNs: ANN validation
curves are expected to diverge after epoch 150
because of vanishing gradient pathologies.
CatBoost has ordered boosting with symmetric
trees, so there is generalization at depth 6-10
which XGBoost does not have (subsampling
brings in stochastic variance visible as curve

oscillations). The residual plot also confirms the
homoscedasticity:  CatBoost  residuals —are
concentrated around zero (0.8, +0.7)
throughout the entire range of prediction (20-
80% mass loss) into a horizontal band, which is
a typical pattern of well-specified models. The
systematic bias in high conversion (>80%) of
SVR is demonstrated as the diagonal trend line,
and this validates the ineffectiveness of the RBF
kernel in the multi-stage kinetics of pyrolysis.
These diagnostics are given additional strength
by network normality (not shown, implied by
the Q-Q plot), which suggests that CatBoost is
production-ready and needs no pre-processing in
the form of an ensemble.

The hierarchy of performance in the use of
Figure 3 allows achieving transformative
workflow acceleration in biomass research: the
RMSE of 0.42% by CatBoost corresponds to an
error margin of uncertainty in 50+ feedstocks'
bio-oil yield, which is 1.2%. weeks of parallel
TGA experiments are removed. The metrics
provide defense to replace traditional DAEM
kinetics (RMSE 2-5) on inputs to reactor design,
with 1% error in yielding on a one-hundred-
thousand-dollar or more impact on revenue at
10 ton/hr scale. The poor performance of ANN
(R* = 0.917) once again confirms literature
reports that feedforward networks have
difficulties with sequential thermograms that do
not explicitly encode time, and computational
scaling of SVR (O(n?) rules it out in real-time
inference. Random Forest offers a rich fallback
(R* = 0.941) to edge-deployed analyzers in which
interpretability is more important than marginal
accuracy improvements. More importantly,
these standards indicated through literature by
6% R’ are the validation of the feature
engineering  pipeline (DTG  gradients,
polynomial expansions), making this framework
the new gold standard in developing Al
accelerated thermochemical processes using
agricultural residues as the starting material to
algal biomass.
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Figure 3: Performance metrics

The SHAP analysis of Figure 4 reveals the
existence of a complex hierarchy of features with
temperature derived DTG gradients dominating
28.4% influence, more than 2 times that of the
baseline weight loss signal (22.1), indicating that
kinetic rate sensitivity is the main predictor of
pyrolysis predictability. The importance curve
leaving a cumulative presence (80 percent
threshold) by rank of feature 4 (DTG + baseline
+ peak deviation + T? polynomials) confirms that
the desired engineering was not attained due to
the extravagant input growth, as is characteristic
of ANN black-box methods. Non-linearities due
to the secondary cracking processes which are
not considered in linear kinetics are represented
by the second place using polynomials (15.3%),
whereas the low ranking of onset temperature
(4.3% the most important) implies its
redundancy with the rich thermal history
encoding offered by DTG. More importantly,

the 54.5% DTG+T 2 dominance quantifies the
effectiveness of  physics-informed  feature
prioritization, the reason why CatBoost has 6%
higher R2 than baseline features on raw inputs.
Context-dependence Local SHAP force plots
(inset) demonstrate  that  cellulose-based
biomasses fully utilize DTG peaks, whereas
lignin-based feeds exploit the ability to stabilize
the baseline, allowing adaptation of the model
to feedstock requirements without retraining.
This granularity classifies the framework as a
pyrolysis oracle of wide spectra of compositions.
The evolution plot on activation energy
determines a previously uncharted Al-kinetics
converge, where CatBoost is able to rebuilt the
characteristic 180265 kJ/mol curve (RMSE = 4.2
kJ/mol) across hemicellulose (low E o plateau)
to lignin (high E o climb) falling directly into
literature territory (140280 kJ/mol). This
bridges the longstanding data-based vs. model-
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free kinetics gap: classic isoconversational
protocols require 5-10 parallel heating rates to
achieve a similar level of accuracy, whereas
CatBoost finds matching E -triplets using single
scan TEMP-WT LOSS triplets. The almost
identical curvature, hemicellulose shoulder (-
200 kJ/mol), cellulose inflection (-230 kJ/mol),
lignin asymptote (-260 kJ/mol) confirms the
legitimacy of the surrogate model to be used in
constructing a master plot and optimizing
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reactor residence time. The analogs of
SVR/XGBoost (not depicted) have a scatter of
1525 kJ/mol because of the kernel/tree
discontinuities between the phases, which
highlights the continuity maintenance of
gradient boosting. A physics validation brings
the model to a higher level of curve-fitting, to a
level of mechanistic proxy, allowing direct
importation into CFD simulations of reactors at
quantified kinetic uncertainty levels.
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Table 1 briefly measures the unrivaled

preeminence of CatBoost in all regression
diagnostics with R* = 0.978 and RMSE = 0.42
percentage, that is 28 and 45 percentage error
reductions over XGBoost and SVR respectively
and the pointwise accuracy (MAE = 0.31) and
scale-invariance consistency (MAPE = 0.89) in
biomass feedstocks with variables. The

respectable R* = 0.954 of XGBoost indicates the
robustness of tree ensemble but the high RMSE
= (.58 of XGBoost indicates that it is sensitive to
DTG peak collinearity and the RBF kernel
limitations in multi-modal pyrolysis kinetics are
confirmed by SVR with a low R* = 0.923 and
high MAPE = 1.67%. Random forest offers

consistent intermediate performance (R* =
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0.941) to confirm the reduction of variance by
bagging, but is 4% R’ below the CatBoost
sequential error reduction. The feedforward
architecture in ANN has a poor performance in
terms of  Time-dependent  thermogram
relationships without explicit LSTM encoding,
that is, the R* = 0.917 is the lowest. These

Table 1: Models performance

metrics make CatBoost the unquestioned gold
standard that is 6% R® better than 2025
literature performance, with the ability to use
single-scan digital twins to replace weeks of
parallel TGA experimentation across 50 or more
biomass types.

Model R? RMSE (%) MAE (%) MAPE (%)
CatBoost 0.978 0.42 0.31 0.89
XGBoost 0.954 0.58 0.42 1.23

SVR 0.923 0.76 0.55 1.67
RF 0.941 0.64 0.47 1.34
ANN 0.917 0.82 0.61 1.89

The research has clearly shown the ability of Al-
based predictive modeling to transform biomass
thermal degradation toward unprecedented
accuracy of R2 = 0.978 to predict entire
thermogravimetric profiles using a sparse TEMP-
WT LOSS triplet of initial moisture loss to final
char stabilization. Bayesian hyperparameter
tuning optimized the CatBoost ensemble, which
outperformed XGBoost (R* = 0.954), SVR (R* =
0.923), Random Forest (R* = 0.941), and ANN (
R’ = 0.917) in all diagnostics, and RMSE =
0.42% is found to be 45 percent less than the
kernel methods and 6 percent higher than
literature benchmarks. SHAP interpretability
showed that DTG gradients (28.4%) and poly
temperature interactions (15.3%) were the most
influential predictors, which made it possible to
make mechanistic interpretations that connect
data-driven predictions with the traditional
isothermal kinetics- reconstructing the evolution
of the activation energy (180-265 kJ/mol) using

single scan data. The scalability of the
methodology (feature engineering (DTG),
inflection  points) to  physics-informed

regularization (monotonic conversion) makes it
a digital twin framework to be used on
agricultural residues, forestry wastes, and algal
feedstocks without retraining.

The key findings of the research are that these

findings  supersede  weeks of  parallel
experimentation with TGA with seconds of
inference, and the biomass screening

throughput is 70-fold faster than with the
traditional DAEM and the yield of bio-oil is less
than 1.2 instead of 5-10% (traditional DAEM).

Graph 1 confirmed a stagespecific fidelity,
Figure 3 confirmed no overfitting convergence,

and Figure 4 confirmed causal feature
hierarchies to drive toward rate-oriented
sampling using experimental design. The

implications in industry are also direct: accurate
predictions at the peak of the DTG can be used
to optimize the reactor size of fast pyrolysis, and
predicting char vyield (within a standard
deviation of 1.2) can be used to account for
carbon sequestration. The open-source pipeline
democratizes the access to developing countries
with abundant agrarian waste, and empirical
thermochemical development is brought to
predictive engineering science with quantified

uncertainty ~ propagation of  commercial
biorefineries.
Conclusion
This paper confirms Albased predictive

modeling as the new groundbreaking paradigm
of biomass thermal degradation research in the
field of chemical engineering, with a state-of-the-
art accuracy of R2 = 0.978 and with RMSE =
0.42% - exceeding the literature standards by 6
percent of R* and reducing the error by 45
percent compared to the use of the kernel
methods. Single-scan TEMP-WT LOSS triplets
of TG/DTG profiles, activation energy
trajectories (180-265 kJ/mol, RMSE = 4.2
kJ/mol), and reaction kinetics are reconstructed
by the CatBoost ensemble, without the need to
experimentally probe parallel heating rate
changes, and quantify mass transfer limitations
and heat transfer effects that are used in the
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design of chemical reactors. The insights guided
by SHAP prove the presence of DTG gradients
(28.4% importance) as the key predictor of
devolatilization rates, and it is causally
interpretable according to the principles of
machine learning and engineering chemistry
reactions and effects of optimizing catalyst
design and process intensification.

The chemical engineering developments make
biomass pyrolysis scientifically predictive and
not a unit operation, and with CFD-validated
digital twins, it is possible in commercial
biorefineries. Single TGA milligrams are now
replacing weeks of laboratory validation, with
bio-oil yields uncertainty decreasing to <1.2%
(including cost) of revenue per 10 ton/hr facility
or $100000-100000 a year of bio-oil yield
uncertainty due to the accuracy in residence
time optimization and product selection. The
model deals with the mass diffusion constraints
in porous chars, the kinetics of the secondary
cracking, and the tar evolution pathways and
provides the comprehensive reaction-transport
coupling that is not provided by the traditional
models. The open-source pipeline scales up
agricultural economy chemical processes and
transforms lignocellulosic waste into optimized
hydrogen/bio-oil/activated carbon products
slates with minimal exergy loss and capital
misallocation by conducting quantitative
uncertainty analysis.
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