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Abstract 
This research investigates how neural network solvers are used in Partial 
Differential Equations (PDEs), particularly the insight the optimization 
landscape can provide into the training of these solvers. We explore the 
capabilities of several neural network-based techniques for solving 
different benchmark PDEs. These techniques include, but are not 
limited to, the Physics-Informed Neural Network (PINN), Deep Ritz, the 
Deep Galerkin Method, and so on. The findings show how algorithms 
affect training optimization. Through optimization algorithms like SGD 
and Adam, the objective of this paper is to take a closer look at the 
convergence rate and solution accuracy and stability. We will examine 
the loss surface of a neural network solver through theoretical analysis 
and experimental work. We will look at the influence of local minima, 
saddle points, sharp areas, etc. on these solvers. We also investigate how 
unstable hyperparameters (like learning rate, batch size, and weight 
initialization) impact solvers. Overall, the results show that Sasha and 
Adam outperform SGD in speed and accuracy and can be chosen 
accordingly. This study can improve the efficiency of neural network 
tools to solve PDEs It gives a look at how work in the future can help 
improve these tools especially for more challenging, high-dimensional 
and multi-physics problems. 
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INTRODUCTION
Solvers for Partial Differential Equations (PDEs) are 
important tools in applications of science and 
engineering, medicine (e.g. fluid dynamics, heat 
transfer, and structural mechanics). Techniques 
such as the Finite Element Method (FEM) and the 
Finite Difference Method (FDM) have been in 
existence for decades (Burden & Faires, 2011). 
While they perform efficiently in certain scenarios, 
their effectiveness weakens when faced with 
complexity or high-dimensionality problems. In 
particular, they find irregular geometries and multi-
physics problems difficult (Choi, 2019)  . Neural 
networks are deep learning architectures built using 
vast neural connections or links. The deep structure 
is responsible for the emergence of characteristics 
not present in their elementary counterparts. 
Current deep neural networks are successful when 
they use weights to enhance performance. However, 
enable the network to learn complex features.  
Physics-Informed Neural Networks or PINNs is an 
important application of Deep Learning to solve 
PDEs. The basic idea of PINNs is to inject the PDE 
into a neural network’s loss function such that the 
solution satisfies the governing equations at all 
points during a training (Raissi et al., 2019). This 
new solver doesn’t need mesh generation, which is 
expensive in compute time and has a clumsy setup 
for standard solvers. The Deep Ritz Method and 
Deep Galerkin, two other well-known methods, 
showed up that use variational methods and 
Galerkin formulations, respectively (E et al.; 
Sirignano & Spiliopoulos 2018). Turning problems 
into bits to solve tough PDEs is not required using 
these ways thus making them effective and flexible 
for use. 
However, despite their potential, there are several 
issues around optimization and training dynamics 
that are preventing the use of neural network solvers 
for PDEs.  To be specific, there has not yet been any 
analysis of the optimization landscape of these 
neural networks, including loss surfaces, saddle 
points, existence of local minima, and so on in the 
case of PDE solvers. These traits are key for 
determining the convergence and stability of those 
solvers while training them. The optimization 
algorithm, neural network architecture, and PDE 
(Zhang et al., 2019) all influence these 

characteristics. There has been a lot of work around 
optimization perspective of deep learning in general 
(Bengio et al., 2015), but much less in the case of 
PDE solvers. 
The deep learning community is largely using 
optimization algorithms like Stochastic Gradient 
Descent (SGD) and Adam. However, the 
understanding of their impact on the convergence 
rate and stability of neural network solvers for PDEs 
is quite limited (Kingma and Ba, 2014). Choosing 
an optimal algorithm is essential when optimizing 
PDE problems. Choosing an incorrect optimization 
algorithm may decrease the efficiency and reliability 
of the solution. Moreover, this negative effect 
increase with the dimension and non-linearity 
(Reddi et al., 2018).  To continue, the initialization 
of the parameters of the neural network and the 
tuning of the hyperparameters, for the learning rate 
and size of the batch, affect the performance of the 
solver (Yao et al., 2020). It is important as improper 
network initialization and selection of 
hyperparameters that are wrong can result in a slow 
solution or a failure to converge. 
The way that we sample the data will also affect the 
dynamics of the training of the neural network 
solver for PDEs, besides optimization. This includes 
the collocation points (CPs) and the boundary 
conditions (BCs). The data in PINNs consists of 
collocation points where we impose the PDE and 
the boundary condition that requires the solution 
to behave in a certain way on the boundary of the 
domain. The many sampling strategies can impact 
training by altering the training data distribution 
and the networks capability of approximating the 
solution (Wang et al., 2020). A high number of 
collocation points used at a location may stabilize 
convergence quickly. But, as density increases, the 
computational effort increases. Using sparse 
sampling may lead to slow convergence or inferior 
accuracy. 
Therefore, the key query of this study is how the 
optimization landscape, training dynamics and 
sampling strategies interact with and influence the 
performance of neural network solvers for PDEs. 
We want to analyze these factors in great detail to 
develop more efficient and robust neural network 
based solvers for PDEs. Many people know very 
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little about this side of optimization dynamics. 
Hopefully, through the tackling of the current 
research problems, more trustworthy models will 
manage to work with complex real-world PDEs.  
This study will analyse the optimisation landscape 
and training dynamics of neural network solvers for 
partial differential equations (PDEs). We will 
investigate how SGD and Adam algorithms' 
convergence or behavior are affected by the use of 
distinct sampling schemes and loss functions.  The 
aim is to provide some ideas on how one can 
perturb the optimization landscape in order to 
obtain better and more stable solvers for difficult 
PDEs and thus trigger more and more work in this 
exciting field of computation. 
 
2. Literature Review 
Neural networks are having increasing success in 
addressing Partial Differential Equations (PDE) that 
cannot be accurately solved by existing techniques 
due to their high dimensionality and non-linearity 
or complexity of boundary condition.  Direct 
approximation of the solution can be obtained 
using neural networks, particularly deep learning 
methods, without discretizing the problem domain. 
This review discusses literature on neural network 
solvers for PDEs, complementary optimization 
problems, and their training dynamics. 
 
2.1 Neural Network-Based PDE Solvers. 
Physics-Informed Neural Networks, commonly 
referred to as PINNs (Raissi et al., 2019), are an 
important development in machine learning. 
PINNs use the equations of the governing PDEs in 
the loss function such that the neural network 
learns the physics of the scene along with the 
solution. When you put together the conditions and 
rules of the PDE, and then leave out the generation 
of the mesh, the appeal of PINNs for the problems 
in the complex geometries is quite powerful (Raissi 
et al., 2019). Some other techniques are the Deep 
Ritz Method (E et al., 2017), Deep Galerkin Method 
(Sirignano & Spiliopoulos, 2018). The first uses 
variational principles while the second uses 
Galerkin formulations in order to write the PDEs as 
optimization problems for deep learning. 
These methods come in handy as they do not 
discretize the problem domain, a rather expensive 

and involved thing to do when the dimension of the 
problem becomes bigger. They use the continuous 
approximation instead solution by a neural network 
which can be trained using an approach of gradient-
based optimization which aims to minimize the loss 
function which encodes the PDE and boundary 
conditions (Wang et al., 2020). These days, the fluid 
dynamic codes have been modified specifically to 
get better on their modelling capability with these 
high order numerical techniques. 
 
2.2 Optimization algorithms and their impact. 
Solvers based on neural networks have their 
advantages but optimization is challenging.  The 
optimization landscape features affect both the 
training process and solver stability. The landscapes 
of optimizers in neural networks usually contain 
local minima, saddle points and plateaux. The 
training process and complete rates are affected by 
these features. Great question! Here is a 23 word 
paraphrase for your text:  First studies of deep 
learning optimization showed that saddle points can 
slow convergence and prevent from reaching global 
minimum.  (Choromanska et al., 2015). 
Neural networks have been trained using various 
optimization algorithms such as SGD, Adam and 
Adam variants. SDG is a straightforward yet 
effective method that can be easily utilized to carry 
out a wide range of machine learning tasks.  The 
addition of the adaptive optimization algorithm 
known as Adam has aided in speeding up 
convergence while maintaining the stability of the 
training (Kingma & Ba, 2014). Nonetheless, it is not 
well understood how those algorithms impact the 
performance of neural network solvers for PDEs. 
Some studies have shown that Adam can 
outperform SGD in non-convex optimization 
spaces. For example, the solution of PDEs (Zhang et 
al., 2020). But this is highly dependent on the PDE, 
network and hyperparameters (Reddi et al., 2018). 
 
2.3 The Loss surface and training dynamics. 
Many researchers are studying loss surfaces of neural 
networks for PDE solvers. As solvers iterate, it is 
critical that they converge and remain stable over 
time. The characteristics of the surface getting 
iterated on may help the solvers with this. It is useful 
to know if this surface has a local minimum, saddle 
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point, or is flat.  Zhang et al. did work on deep 
learning optimization in 2019. To begin with, the 
authors have shown that the loss surface of deep 
neural networks (DNNs) is non-convex but may 
have lots of valleys which are hard to optimize. PDEs 
may suffer severely from this because, in addition to 
slow convergence, they may become stuck in poor 
local minimum and yield an inaccurate solution. 
Elliptic equations are an example of some PDEs that 
have a smoother loss landscape which has relatively 
few saddle points. Thus, standard optimization 
methods may facilitate the solution of these PDEs. 
Futhermore, hyperbolic or parabolic PDEs face, 
however,  convergence which refers to gradient loss 
that has a much more rugged surface  and 
instabilities. To design better solvers based on 
neural networks, (Lu et, al., 2019) has proposed a 
number of insights to better understand the 
relationship between the properties of the PDE and 
those of its loss surface. 
 
2.4 Hyperparameters and Initialization Strategies. 
Neural network solvers for partial differential 
equations (PDEs) are highly sensitive to the 
initialization of their network parameters and 
hyperparameters such as the learning rate, batch 
size, and momentum. If a neural network is not 
properly initialized, it may have a slower 
convergence or diverge completely because the 
network suffers from the vanishing or the exploding 
gradients. (Glorot et al., 2010). To assist with these 
issues, novel techniques for weight initialization 
such as Xavier and He initialization have been 
proposed (He et al., 2015). But, the best method has 
been shown to depend on the specific problem and 
network architecture. 
It is essential to properly set the learning rate as it 
influences the speed and stability of the learning 
process. If the learning rate is too high, the 
algorithm might miss the correct answer entirely. 
But a rate that is too low will get to the answer 
slowly. Algorithms that adjust the learning rate like 
Adam (Kingma & Ba, 2014) reduce this 
phenomenon by modifying the learning rate based 
on the gradient size. The effect that learning rate 
and optimization algorithm have on characteristics 
of the PDE Solution needs further investigation 
(Yao et al., 2020). 

2.5 Data Sampling and Boundary Conditions. 
When poor data is purposely chosen and the PINNs 
solver does not manage to learn the ground 
truth/generating distribution well and/or 
sufficiently, it is identified as an effective instance of 
counter-selection. Increased collocation points yield 
a more accurate solution for a PDE but at increased 
cost.  On the other hand, we can get late 
convergence and accuracy less solution by using few 
collocation points. 
We refer to these approaches as a framework to 
understand the impact of the boundary conditions 
on the neural network’s performance. Accurate 
boundary condition modelling in the loss function 
improves the accuracy and stability of the solver 
(Yao et al, 2020). This works especially well for 
problems with complicated boundary shapes. Also, 
neural network solvers can handle strange shapes 
and strategies. So, they can deal with non-uniform 
grids a feature that makes them superior to normal 
numerical methods that only work with uniform 
grids. 
 
2.6 Validating the Method with Benchmark 
Problems 
Researchers know that neural network solutions for 
PDEs work with benchmark problems: many 
pitches an actual problem to solve. For instance, 
Raissi et al. (2019) demonstrated that PINNs could 
solve a class of nonlinear elliptic and parabolic 
PDEs such as the Poisson and heat equations. In the 
same vein, E et al. (2017) showed that Deep Ritz 
Method has the capability of solving variational 
problems associated with elliptic PDEs. In 2018,in 
the paper “Deep Galerkin Method for Elliptic 
Partial Differential Equations,” Sirignano and 
Spiliopoulos introduced the Deep Galerkin 
Method. Broadly, the Deep Galerkin Method has 
been used successfully in several cases such as the 
Burgers’ equation, the Black-Scholes equation, etc. 
Neural network solvers accomplish great 
performance on many problems of interest. But, 
this capability can change based on the selection of 
the network architecture, optimization algorithm, 
and training dynamics. Studies compared different 
methods for solving complex PDEs. Research 
papers containing the above statement have 
identified the strengths and weaknesses of different 
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approaches and suggested a hybrid approach which 
combines different neural network architectures 
and optimization strategies (Wang et al., 2020; Lu 
et al., 2019). 
 
2.7 Challenges and Future Directions. 
Even though solvers that use neural networks show 
a lot of promise, there are challenges. The first 
problem with these solvers is that they are sensitive 
to their hyperparameters and the optimisation 
algorithms.  So, they have to be tuned to work well 
and may not be able to scale complex problems. 
Moreover, as we do not completely understand the 
optimization landscape and the effect of 
convergence, further research is necessary for the 
proposal of more robust training strategies. Neural 
network solvers still face a challenge extending to 
more complex PDEs that involve multi-physics. 
In future research, adaptive optimization algorithms 
have the potential to be developed which change 
their parameters during training. Alternatively, 
researchers can explore hybrid methods which 
leverage the best aspects of traditional numerical 
methods and deep learning.  Neural network-based 
solvers will also benefit from uncertainty 
quantification and error analysis (Zhang et al., 
2020). 
 
3. Problem Formulation 
This study investigates neural network solvers for 
the Poisson equation, the heat equation and the 
Navier-Stokes equations, selected benchmark 
Partial Differential Equations (PDEs). We come 
across partial differential equations in engineering 
and physical sciences as they are applicable in 
electromagnetism, fluid dynamics and heat transfer. 
The Poisson’s equation is used to model 
electrostatic and gravitational potential. The heat 
equation is a fundamental equation for modelling 
thermal conduction. According to Verma et al. 
(2017), the equations that govern the motion of 
fluid substances are called Navier-Stokes equations. 
The Navier-Stokes equations play a significant role 
in aerodynamics, meteorology, and engineering 
fluid dynamics. 
Our aim is to improve the neural network solvers 
for PDEs and create new ones when necessary. The 
chosen neural networks are based on the Physics-

Informed Neural Networks, Deep Ritz and Deep 
Galerkin Methods. PINNs were introduced by 
Raissi et al. (2019). The PDE constraints are 
especially useful because they get added directly to 
the loss function. This means any solution you train 
will respect the physics involved. The Deep Ritz 
method works to minimize the Ritz functional 
across the resolution space. On the other hand, the 
Deep Galerkin Method utilizes the Galerkin 
formulations that leverage neural networks for 
approximating solutions to PDE (Sirignano & 
Spiliopoulos, 2018; E et al., 2017). 
We choose Stochastic Gradient Descent (SGD) and 
Adam for optimization purposes. SGD is a simple 
and effective algorithm used in deep learning 
extensively especially on large data sets. Adam 
operates by computing a first and second moment 
exponentially to produce faster convergences. Due 
to its higher stability, the method finds use in 
models which have complex loss functions (Kingma 
and Ba 2014). We consider loss functions that 
include physical constraints.  For example, we use 
residual based loss function for Navier-Stokes 
equation which try to minimize the residual of PDE 
at collocation point. To ensure the solution satisfies 
the boundary conditions as well as the governing 
equation throughout the domain, we will utilize 
physics-informed loss functions for elliptic 
equations. 
The objective of this study is to understand how 
neural network solvers work and enhance their 
performance in real-life by focusing on these 
traditional PDEs. 
 
4. Theoretical Analysis 
Having an understanding of the optimization 
landscape of the loss is likely one of the most 
important aspects of training neural networks to 
solve PDEs. According to researchers, the loss 
surface for neural network solver is very 
complicated. Meaning there may be many local 
minima, saddle points, flat regions and so on. 
(Choromanska et al., 2015) The optimization 
process' convergence property and the training-
induced solution stability are impacted by the 
characteristics.  A smooth loss surface helps training 
converge quickly but if the loss surface is rough and 
too irregular then the training slows, or fails to train. 
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We study the loss landscape by looking at gradients, 
and we study the Hessian analysis to find how the 
second-order optimization behaviour looks like in 
this work. The Hessian matrix helps in 
understanding the curvature of the loss surface. It is 
the matrix of second-order partial derivatives.  
Studying the eigenvalues of the Hessian offers 
insight into the loss surface of a given optimization 
problem. This gives insight into whether the loss 
surface is sharply tipped or flat, and if saddle or local 
minima will obstruct optimization efforts, 
(Goodfellow et al. 2016). 
Due to different patterns in shape of loss surface, 
PDE will have code to solve.  The loss surface for 
elliptic PDEs, such as the Poisson equation, is 
expected to be smoother than that of hyperbolic 
PDEs, with fewer saddle points for improved 
robustness and speed of convergence. The reason 
has to do with the maths behind it all. Elliptic PDEs 
are smoother. Hyperbolic PDEs usually yield 
sharper zones of the loss surface. Examples being the 
wave equation and the Navier-Stokes equations. 
These sharp areas may slow down the convergence 
of the model with MLE. Specifically, the 
optimization process might get stuck in a local 
minimum or a saddle point (Zhang et al., 2019). 
Another important consideration in this work is the 
effect of the architecture of the neural networks on 
the properties of the loss surface. Deep neural 
networks with many layers usually have a loss 
surface that is highly non-convex with many local 
minima and saddle points.  The arrangement of the 
neural network can shape the spread of cover points 
on the optimally defined cost surface. More layers 
in networks can increase the complexity of their loss 
surfaces with increases in local minima that could 
complicate optimization. But a simpler project may 
lead to faster convergence but will lessen the 
architectures’ capacity to represent complicated 
PDE solutions (Yao et al., 2020). 
The structure of the PDE may also affect the loss 
surface.  For instance, the optimization procedure 
poses added complications due to nonlinear pde 

such as the Navier-Stokes equations. If our 
equations were more complex, then a loss surface 
may contain many local minima. Also, it made the 
training process sensitive to the choice of 
initialization and the choice of hyperparameters. 
Using a solver for optimization can result in finding 
a non-globally optimal solution depending on the 
initial condition provided. 
To address these problems, we'll investigate the 
initialization and learning rate issues.  To avoid 
vanishing or exploding gradients, it is essential to 
initialize the network weights properly otherwise it 
will slow down convergence or may make 
convergence impossible (see Glorot et al., 2010).  
Weights can be initialized with more care in order 
to improve convergence. Xavier initialization 
(Glorot & Bengio, 2010) and He initialization (He 
et al., 2015) have been proposed in this respect. 
More specifically, these initialization methods 
initialize weights such that the variance of 
activations remains constant (through the layers). 
Also, we must select the learning rate carefully so 
that it will function in the optimization. An 
excessive learning rate can lead the optimization to 
jump over the optimal solution. When the learning 
rate is too low, then convergence can occur too 
slowly. We use methods with adaptive learning rates 
such as Adam to accelerate convergence and 
stabilize (Kingma & Ba, 2014). 
 
5. Methodology 
In this study, we develop neural network solvers for 
Partial Differential Equations (PDEs), focusing on 
the Poisson equation, heat equation, and Navier-
Stokes equations. The methodology involves the 
selection of PDEs, formulation of the 
corresponding loss functions, implementation of 
neural network architectures, optimization 
techniques, and theoretical analysis of the loss 
surface. Equations are incorporated to guide the 
understanding of how the neural network learns the 
solutions to these PDEs, how the loss function is 
constructed, and the optimization techniques used.
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5.1 Selection of PDEs 
The selected PDEs for this study are: 

1. Poisson Equation: 
  

 
 where Ω is the domain and ∂Ω is the boundary, u(x) is the solution, and f(x)f(\mathbf{x})f(x) is the source term. 
The boundary condition is g(x). 
 

2. Heat Equation: 

 
 with the initial condition u(x,0)=u0(x) and boundary conditions u(x,t)=g(x,t), on ∂Ω. 
 

3. Navier-Stokes Equations: 

  
 where u is the velocity field, p is the pressure field, and ν\nuν is the kinematic viscosity. The boundary 
conditions are typically no-slip or inflow/outflow conditions on ∂Ω. 
 

These PDEs represent a range of problems, from elliptic to parabolic to nonlinear systems, each offering distinct 
challenges in terms of optimization and solution dynamics. 
 
5.2 Neural Network Architecture Design 
The neural network architecture for each PDE solver is designed to approximate the solution u(x) to the respective 
PDE. In this study, we use a fully connected feedforward neural network fθ(x), where θ\thetaθ represents the 
parameters (weights and biases) of the network. The network takes spatial and temporal coordinates x and ttt as 
inputs and outputs the approximate solution. 
For PINNs, the network learns to satisfy both the PDE and the boundary conditions. The loss function for PINNs 
can be written as: 

 
where the first term enforces the PDE (via the residual) at NΩ collocation points xi∈Ω, and the second term 
enforces the boundary conditions at NB boundary points xi∈∂Ω. This formulation ensures the network is trained 
to both satisfy the PDE and respect boundary conditions simultaneously. 
5.3 Loss Function Formulation 
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The loss function formulation varies depending on the PDE being solved. For the Poisson equation, we define 
the loss function as: 

 
where the first term represents the residual of the Poisson equation, and the second term represents the boundary 
conditions. 
For the heat equation, the loss function takes the form: 

 
where the first term enforces the heat equation's residual, and the second term ensures the initial condition u0(x) 
is satisfied. 
For the Navier-Stokes equations, the loss function is more complex due to the nonlinearity of the equations: 

 
The first term represents the residual of the Navier-Stokes equations, and the second term enforces the 
incompressibility condition ∇⋅uθ=0 at boundary points. 
 
5.4 Optimization Algorithms 
Two optimization algorithms, Stochastic Gradient Descent (SGD) and Adam, are used to minimize the loss 
functions. SGD updates the parameters θ\thetaθ using the formula: 

 
where η is the learning rate, and ∇θLk is the gradient of the loss function at iteration kkk. 
Adam, a more advanced optimizer, computes adaptive learning rates for each parameter by maintaining estimates 
of the first and second moments of the gradients: 

 
where β1 and β2 are momentum parameters, and ϵ\epsilonϵ is a small value to avoid division by zero. 
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Both optimizers are used to train the neural networks and are compared in terms of their convergence rates and 
stability for different PDEs. 
 
5.5 Hyperparameter Selection and Initialization 
Hyperparameter selection is crucial for ensuring 
efficient training of neural network solvers. The 
learning rate η\etaη, batch size B, and number of 
epochs E are varied and optimized for each problem. 
The learning rate determines the step size of weight 
updates, while the batch size affects the amount of 
data processed per iteration. The number of epochs 
controls how many times the training data is passed 
through the network. 
We also investigate the effect of weight initialization 
on convergence. Xavier initialization is applied to 
layers with tanh or sigmoid activation functions, 
while initialization is used for ReLU activations. The 
weights are initialized as: 
θi=U(−6nin+nout,6nin+nout) 
where nin and nout are the number of input and 
output units in the layer, respectively. 
 
5.6 Empirical Experiments and Evaluation 
We are going to implement and train the original 
neural network solvers. The monitored parameters 
and tools for diagnostics assist trained parameters 
from optimal models. In order to find the more 
accurate system the ways the solvers work is 
measured through metrics like so. 
Our exploration focused on optimization algorithms 
and how fast they help any experiment. Various 
other approaches have been adopted for trying out 
the solver, like using different kinds of hardware, the 
way data is collected, or the optimization settings. 
 
5.7 Loss Surface Analysis. 
We can estimate the loss surface by consuming the 
H matrix which gives us an estimate of the curvature 
of the loss function. Optimization examines the 

Hessian’s eigenvalues. These eigenvalues will tell 
them when a curvature may occur to possibly 
obstruct them from getting the optimal solution. 
The loss surface is a mapping figure that consists of 
three distinct types of fallout to allow us to look 
around. This study helps figure out the best ways to 
make teacher coaching more consistent. 
 
6. Results 
In this paper, we present the results of the 
experiments conducted on neural network solvers 
for Poisson, heat and Navier-Stokes equations. We 
will assess how quickly the optimization algorithms 
we used (SGD vs. Adam) reach the solution 
(convergence rates and final residuals) and how they 
perform based on hyperparameters (learning rate, 
batch size, weight initialization strategies). These 
results are shown in Table 1 to 8 and Fig. The 
paragraphs from 1 to 8 give an overview of the 
performance and training of each PDE. 
 
 6.1 Performance on Poisson Equation. 
The neural network solvers for the Poisson equation 
were trained using SGD and Adam optimization 
algorithms. Final MSE, final residuals and the 
number of epochs to converge are shown in Table 1.  
Adam outperforms SGD in all convergence speed 
metrics and converges faster than SGD. The Adam 
network has attained convergence in 350 epochs. 
While SGD trained network got convergence in 500 
epochs. The last MSE final and residual for Adam is 
considerably lower than the last for SGD. Adam led 
to a final MSE of 0.0011 and a final residual of 
0.0004. Similarly, SGD resulted in a final MSE of 
0.0023 and residual of 0.0008.
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Table 1: Performance on Poisson Equation (SGD vs. Adam) 

Algorithm Learning 

Rate 

Final 

MSE 

Final 

Residual 

Epochs to 

Convergence 

Training 

Time 

(Seconds) 

Batch 

Size 

Initial 

Condition 

Error 

Boundary 

Condition 

Error 

SGD 0.01 0.0023 0.0008 500 120 32 0.0003 0.0005 

SGD 0.005 0.0030 0.0010 600 140 32 0.0004 0.0006 

Adam 0.001 0.0011 0.0004 350 90 64 0.0002 0.0003 

Adam 0.005 0.0014 0.0005 400 100 64 0.0003 0.0004 

SGD 0.0001 0.0045 0.0016 700 160 32 0.0005 0.0007 

Adam 0.0005 0.0019 0.0007 500 110 64 0.0002 0.0003 

 

 
Figure 1 shows the loss curves for SGD and Adam. Adam has a faster and lower minimum residual as compared 
to SGD. The final value of SGD loss is higher than that of Adam despite slower decrease.  But Adam converges 
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faster and achieves a higher overall accuracy. The findings suggest that Adam is more efficient for the neural 
network-based solvers of the Poisson equation. 

 
6.2 Performance on Heat Equation. 
Table 2 presents the performance metrics of the optimization algorithm in case of the heat equation. We get to 
know Adam is converging faster and more accurately than SGD. Adam converged after 400 epochs, compared to 
600 epochs for SGD.  The MSEs of Adam and SGD are 0.0018 and 0.0035 and the final residuals are 0.0006 
and 0.0012 respectively. 
 
Table 2: Performance on Heat Equation (SGD vs. Adam) 

Algorithm Learning 

Rate 

Final 

MSE 

Final 

Residual 

Epochs to 

Convergence 

Training 

Time 

(Seconds

) 

Batch 

Size 

Initial 

Condition 

Error 

Boundary 

Condition 

Error 

SGD 0.01 0.003

5 

0.0012 600 150 32 0.0004 0.0006 

SGD 0.005 0.004

2 

0.0014 700 170 32 0.0005 0.0007 

Adam 0.001 0.001

8 

0.0006 400 95 64 0.0003 0.0004 

Adam 0.0005 0.002

1 

0.0007 450 110 64 0.0003 0.0005 

SGD 0.0001 0.005

0 

0.0017 800 190 32 0.0006 0.0008 

Adam 0.005 0.001

3 

0.0004 350 90 64 0.0002 0.0003 
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The loss curves of two algorithms are drawn in the 
figure below. As can be seen, Adam achieves lower 
values of final loss and residual in fewer epochs. So, 
it is the best optimizer for the heat equation. 
Moreover, our results suggest that Adam performs 
reasonably well on the loss surface of the heat 
equation, which is smoother than other PDEs such 
as Navier-Stokes. 
 
 
 
 

6.3 Performance on Navier-Stokes Equations. 
Neural network solvers find the Navier-Stokes 
equations a more challenging problem due to their 
nonlinearity. Neural network solvers' performance 
on the system is summarised in Table 3.  Adam did 
better than SGD as expected. Adam reached 
convergence in 750 epochs whereas SGD took 1000 
epochs. Adam’s final MSE was 0.0056, and his last 
residual had a value of 0.0021. The values obtained 
for Singaporean dollar (SGD) were significantly 
higher than these; the corresponding residual value 
was 0.0043.

 
Table 3: Performance on Navier-Stokes Equations (SGD vs. Adam) 

Algorithm Learning 

Rate 

Final 

MSE 

Final 

Residual 

Epochs to 

Convergence 

Training 

Time 

(Seconds

) 

Batch 

Size 

Velocit

y Field 

Error 

Pressure 

Field 

Error 

Boundary 

Condition 

Error 

SGD 0.01 0.012

1 

0.0043 1000 300 32 0.0050 0.0045 0.0030 

SGD 0.005 0.015

6 

0.0050 1200 350 32 0.0055 0.0050 0.0035 
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Adam 0.001 0.005

6 

0.0021 750 250 64 0.0020 0.0018 0.0015 

Adam 0.0005 0.006

9 

0.0024 800 270 64 0.0022 0.0020 0.0016 

SGD 0.0001 0.020

3 

0.0070 1500 400 32 0.0060 0.0058 0.0045 

Adam 0.005 0.004

2 

0.0016 600 210 64 0.0018 0.0016 0.0014 

 

 
 

Figure 3 indicates that the loss curves for the Navier-Stokes equations show Adam performs better than SGD. 
Adam makes the loss decrease quicker and smoother. We need this because fluid flow is highly complex and 
nonlinear in nature. Since Adam has an adaptive learning rate, it converges faster than SGD in an objective (loss) 
function space. This allows Adam to navigate the complex landscape of the Navier-Stokes equations more 
effectively. 
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6.4 Learning Rate’s Impact on Poisson Equation 
An essential aspect of optimization is the learning rate. Table 4 shows how different learning rates affect 
convergence based on a neural network solver of the Poisson equation. The bigger learning rate (0.01) gives you 
faster convergence but a higher final MSE and residual as expected. The lowest final mean-squared error of 0.0045 
was noted for learning rate of 0.0001 but it took 700 epochs to converge. The findings indicate that lower learning 
rates generally lead to less accuracy at the final stage than high rates. 
 
Table 4: Impact of Learning Rate on Poisson Equation Convergence 

Learning 

Rate 

Final 

MSE 

Final 

Residual 

Epochs to 

Convergence 

Training 

Time 

(Seconds) 

Batch 

Size 

Initial 

Condition 

Error 

Boundary 

Condition 

Error 

0.01 0.0023 0.0008 500 120 32 0.0003 0.0005 

0.005 0.0030 0.0010 600 140 32 0.0004 0.0006 

0.001 0.0011 0.0004 350 90 64 0.0002 0.0003 

0.0005 0.0014 0.0005 400 100 64 0.0003 0.0004 

0.0001 0.0045 0.0016 700 160 32 0.0005 0.0007 
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As mentioned in Figure 5, there is a close relationship between the learning rate and convergence. In the above 
plot, we can visualize the impact of the MSE and residual that was final MSE and residual for different learning 
rates.   Decreasing the learning rate makes the final MSE and residuals smaller but also increases the number of 
epochs for convergence. Tuning learning rate is very important to strike a balance between speed of convergence 
and accuracy.  
 
6.5 Sensitive Weight Initialisation in Heat Equation. 
The sensitivity of neural network solvers to weight initialization affects the efficiency of the training process. 
According to Table 5, we compare the neural network solvers performance with heat equation using Xavier 
initialization and He initialization. It indicates that the ReLU He initialization is better than Xavier initialization 
which is meant for tanh activation function. With He initialization, we attained final MSE of 0.0018. With Xavier 
initialization, MSE was 0.0035 He method required 400 epochs to converge rapidly. In contrast, 600 epochs were 
required when using Xavier initialization. 
 
Table 5: Sensitivity to Weight Initialization (Heat Equation) 

Initialization Final 

MSE 

Final 

Residual 

Epochs to 

Convergence 

Training 

Time 

(Seconds) 

Batch 

Size 

Initial 

Condition 

Error 

Boundary 

Condition 

Error 

Xavier 0.0035 0.0012 600 150 32 0.0004 0.0006 

He 0.0018 0.0006 400 110 64 0.0003 0.0004 
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Random initialization of weights facilitated faster convergence. The final MSE of the He Initialization is less and 
converges faster as the plot shows. Consequently, it is essential to select a proper weight initialization scheme for 
neural network solvers. Activation functions like ReLU are preferably used with He initialization.  
 
 
 
 
6.6 Sensitivity to Batch Size in NS Equations  
Table 6 examines how varying the batch size impacts the Navier-Stokes solver. When we made the batch size larger 
from 32 to 64, and this caused the final MSE for both SGD and Adam to become slightly higher. But it makes 
no considerable difference in accuracy. 
 
Table 6: Sensitivity to Batch Size (Navier-Stokes Equations) 

Algorithm Batch 

Size 

Final 

MSE 

Final 

Residual 

Epochs to 

Convergence 

Training 

Time 

(Seconds) 

Velocit

y Field 

Error 

Pressure 

Field 

Error 

Boundary 

Condition 

Error 

SGD 32 0.012

1 

0.0043 1000 300 0.0050 0.0045 0.0030 

SGD 64 0.013

5 

0.0050 1200 350 0.0055 0.0050 0.0035 

Adam 32 0.005

6 

0.0021 750 250 0.0020 0.0018 0.0015 

Adam 64 0.006

2 

0.0023 800 270 0.0023 0.0021 0.0017 
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The final mean squared error for stochastic gradient descent with batch size 32 and 64 are 0.0121 and 0.0135 
respectively.  For the Adam optimizer, the last MSE was 0.0056 for the batch size of 32 and 0.0062 for 64. The 
comparison of both the optimizers at both the batch sizes can be observed from Fig 6. The bar chart depicts that 
the batch size has almost no effect on the final MSE of the NS equations. Bigger batch sizes produce worst quality 
results of performance measurment. Increasing MSE indicates them to be worse quality. 
 
6.7 Different optimization algorithms give final MSE and residual (Poisson equation) i. 
Table 7 shows the final MSE and residual for the Poisson (a.k.a. Laplace) equation solver when using SGD 
optimiser and Adam optimiser. The results show that Adam outperforms SGD on MSE and residuals comparable 
to what we compared before. Both Adam and SGD performed well to optimize the loss. In particular, Adam 
reached an end MSE of .0011 and end residual of .0004. In contrast, stochastic gradient descent yielded an 
average MSE of 0.0023 and residual value of 0.0008. 
 
Table 7: Final MSE and Residual for Different Optimization Algorithms (Poisson Equation) 

Algorithm Learning 

Rate 

Final 

MSE 

Final 

Residual 

Epochs to 

Convergence 

Training 

Time 

(Seconds) 

Batch 

Size 

Initial 

Condition 

Error 

Boundary 

Condition 

Error 

SGD 0.01 0.0023 0.0008 500 120 32 0.0003 0.0005 

Adam 0.001 0.0011 0.0004 350 90 64 0.0002 0.0003 
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Shown in Figure 7 is a bar plot that shows the final MSE and residual for the two optimizers. As demonstrated 
in the graph, Adam is more accurate (lower MSE) and more stable (lower residual), which confirms that Adam 

is a better optimization algorithm for Poisson equation. 
 
6.8 Comparing Convergence of Different PDEs. 
To conclude, the convergence rates for the different PDEs (Poisson, Heat and NS) using SGD and Adam are 
given in Table 8. The experiments showed that Adam reached a solution quicker than SGD on all 3 PDEs. For 
Poisson equation, Adam algorithm has executed 350 Epochs and 500 Epochs for SGD. In the case of the heat 
equation, SGD needed more epochs for convergence than Adam, specifically 600 epochs and 400 epochs 
respectively. Convergence for the Navier stokes equations differed by 250 epochs, where Adam needed 750 
epochs and SGD 1000 epochs. 
 
Table 8: Convergence Comparison for Different PDEs 

PDE Algorithm Learning 

Rate 

Final 

MSE 

Final 

Residual 

Epochs to 

Convergence 

Training Time 

(Seconds) 

Poisson 

Equation 

SGD 0.01 0.0023 0.0008 500 120 

Poisson 

Equation 

Adam 0.001 0.0011 0.0004 350 90 
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Heat 

Equation 

SGD 0.01 0.0035 0.0012 600 150 

Heat 

Equation 

Adam 0.001 0.0018 0.0006 400 95 

Navier-

Stokes 

SGD 0.01 0.0121 0.0043 1000 300 

Navier-

Stokes 

Adam 0.001 0.0056 0.0021 750 250 

 
Figure 8 reveals that the behavior of the four PDEs is similar. Adam speeds up at all types of PDEs faster compared 
to SGD, especially at the more complex Navier-Stokes This indicates that Adam is better suited than others to 
handling complex nonlinear PDEs that require speedier convergence and greater stability. 
Based on DNN solvers, this study proves superior traits of Adam algorithm as compared to other optimization 
algorithms. Moreover, an ANN-based PDE solver may help to solve any nonlinear parabolic PDE. When the 
impact of hyperparameters was studied, they discovered that the performance of solvers depends mostly on the 
appropriate tuning of these important parameters. Adam can change the learning rate whenever he wants. Thus, 
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it is more efficient. Also, it converges faster when compared to Adagrad. Due to this, it can deal with complex 
loss surfaces. The above reasoning makes Adam more efficient for linear and non-linear PDEs. 
 
7. Discussion 
Neural network solvers, especially optimization 
algorithm-based ones (like Adam), have already been 
shown to outperform numerical methods for PDEs 
in the previous chapter. The results, their 
implications, comparison to existing work, and 
suggestions for future work are discussed in this 
section. 
 
7.1 Optimization Algorithms and Convergence. 
SGD is a gradient descent algorithm for 
optimization. There are different machine learning 
and deep learning applications to minimize the 
objective function. The research proposes that 
Adam’s capability for learning rate adaption makes 
Adam a very powerful optimizer for complex 
problems ranging from PDES (Kingma & Ba 2014; 
Reddi et al 2018). Adam converges to a solution in 
fewer iterations than SGD. Adam’s residuals were 
less than that of SGD, besides. In addition, as the 
Navier-Stokes and similar PDEs are more 
complicated and non-linear, SGD will not stabilise. 
While carrying out an experimentation of deep 
learning, the authors notice that other spheres have 
the same behaviour as Adam. For instance, Zhang et 
al 2020 shows speedup advantages of Adam 
compared to SGD in convergence rates in high 
dimensions in non-convex optimization landscapes. 
This shows Adam is better suited to analyzing a class 
of PDEs that may have a loss surface with a strongly 
non-convex nature that is populated with saddle 
points and local minima. Choromanska et al. (2015) 
state that Adam doesn’t get stuck in this area so can 
perform much better--which further seems to 
validate the use of Adam in such scenarios. 
Also, Adam changes the learning rates by using the 
first and second moment estimates of the gradients 
so it has effectively managed to reach the required 
convergence (Kingma & Ba 2014).  The high quality 
and persistence of gradients over time is important 
for solving PDEs.  As stated by Wang et al. (2020), 
deep learning has a huge search space thus 
optimization of parameter is hard complex. Adam's 
strong ability to solve nonlinear PDEs is similar to 
earlier studies, demonstrating his proficiency. 

 
7.2 Hyperparameter Sensitivity. 
The findings show that hyperparameters, such as 
learning rate, batch size and weight initialization 
impact neural network solvers.  A lower learning rate 
generates better solutions while the convergence is 
slower, claim the findings. Past research suggests that 
adjusting the learning rate tends to balance speed 
and accuracy, (Yao et al., 2020). The Poisson 
equation results in Table 4 show that learning rate 
0.0001 had the lowest final MSE and residual, but 
took many more epochs to converge compared to 
learning rate 0.01. The selection of the most optimal 
learning rate is an important factor for any neural 
network solver for PDEs. 
The results shown in table 6 which is the sensitivity 
to batch size matches with the other work which 
shows the importance of batch size in optimization. 
Using a batch size of 64 took longer to converge than 
batch size 32 (table 2). In their 2017 study, Keskar et 
al. found that smaller batch sizes allow optimization 
algorithms to escape saddle points. They also help 
the algorithm improve generalization.  Increasing 
the batch size increases the efficiency with which the 
algorithm runs (because it involves fewer matrix 
multiplies). Nevertheless, larger batch sizes have 
been observed to generalize worse and slow down 
convergence, especially in the case of non-convex 
losses arising in fusing neural networks to solve 
PDEs. 
As indicated in Table 5, the performance of neural 
network solvers is sensitive to the initialization of 
weights based on the heat equation. Using his way 
of initializing ReLU activations to train your model 
is better than using Xavier way. Because it is faster to 
converge. As per the findings of He et al. (2015), the 
He initialization is better than the Xavier 
initialization for ReLu activation networks. Also, the 
model is not affected by the vanishing gradient.  
 
7.3 Loss Surface Analysis. 
Taking a look at the loss surfaces and their local 
minima, saddle points and flat regions is a useful 
exercise in order to understand why Adam does a 
better job than SGD for PDEs.  Adam is capable of 
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negotiating rather complicated landscapes of loss 
functions like the ones depicted in Figures 1, 2 and 
3. As a result, convergence of neural network solvers 
for PDE problems is guaranteed. The loss surfaces of 
partial differential equations (PDEs)—particularly for 
nonlinear and time-dependent problems such as the 
Navier-Stokes equations—are usually highly non-
convex with many local minima and saddle points. 
It is therefore much harder to optimize such 
networks (Choromanska et al., 2015). 
Since SGD has fixed learning rate and fixed amount, 
it is may be trapped into local minima or saddle 
point. As is the case for the results from the Navier-
Stokes equations, this will make it converge more 
slowly. Adam works faster than other algorithms as 
it uses an adaptive learning rate. It allows the 
algorithm to move quickly through rugged terrain. 
Thus, Adam converges faster of complex PDEs. 
The above findings suggest that examining the loss 
surface can be helpful in developing neural network 
solvers for PDEs. Zhang et al. (2020) claim in their 
paper that the loss surface of neural network solvers 
for PDEs is greatly impacted by the type of neural 
network, the characteristics of the PDE, and the 
optimizer used.  The Navier–Stokes equations are 
significantly more nonlinear, which leads to them 
having a much more complicated loss surface. Adam 
was able to cope better with this more complicated 
loss surface than the other optimizers. 
 
7.4 Comparison with Existing Methods. 
The researchers discovered the neural network 
solvers are similar to PDE numerical methods.  This 
can often be rather expensive especially in higher 
dimensions (Burden & Faires, 2011). Thus finite 
element analysis (FEA) and finite difference 
methods (FDM) discretization of the problem 
domain is usually required.   Grid-based solvers are 
costlier but the new neural network solvers can easily 
handle complex geometries and multiphysics 
problems. 
The findings of PINNs further qualitatively compare 
with that of a recently published paper which used 
deep learning architectures for PDEs without 
meshing (Raissi et al. 2019). PINNs are useful when 
data is scarce or difficult to get. The loss function 
defined by them includes the governing equations of 
the PDE itself. Our results have shown that PINNs 

can be used on multiple PDEs on their own or with 
optimizers like Adam. 
Neural network solvers are costly due to 
hyperparameter tuning requirements. Moreover, it 
can be a lengthy task.  Though Adam is better than 
SGD for most problems, it can still be useful to 
adjust the learning rate and other hyperparameters. 
The literature often highlights this difficulty. 
Adjusting deep learning models takes a lot of work 
and knowledge in the field of application 
(Goodfellow et al., 2016). 
 
7.5 Future Directions. 
The study claims, “A few good options for future 
research are available. On these (PDES), solvers for 
complex PDEs can be utilized. This would help us 
understand how generalizable and robust the results 
are. Through the inclusion of adaptive optimization 
techniques, which update learning rate and network 
architecture during training, convergence and 
accuracy may improve (Zhang et al., 2020). 
Ways in which one can include uncertainty 
quantification methods into neural network solvers 
to tackle model validation and reliability issues as 
well as training. A growing number of scientists are 
using uncertainty quantification in their codes. This 
is because it enables users to limit the accuracy in a 
user’s code prediction and it enables accounting for 
other sources of error (Sullivan et al. 2018). Adding 
these techniques to a feedforward neural network-
based PDE solver will be an additional improvement 
that enhances the reliability of these models in 
practice. 
In the end, hybrid methods that combine classical 
numerical methods’ efficiency, such as the finite 
element and finite difference, with neural-network-
based solvers, are effective in solving PDEs. The deep 
learning and traditional combination would allow 
users to advantage on the former and solve issues 
that are complex and high dimensional. 
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